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Abstract: Ship detection in high-resolution synthetic aperture radar (SAR) imagery is a challenging
problem in the case of complex environments, especially inshore and offshore scenes. Nowadays,
the existing methods of SAR ship detection mainly use low-resolution representations obtained by
classification networks or recover high-resolution representations from low-resolution representations
in SAR images. As the representation learning is characterized by low resolution and the huge loss of
resolution makes it difficult to obtain accurate prediction results in spatial accuracy; therefore, these
networks are not suitable to ship detection of region-level. In this paper, a novel ship detection method
based on a high-resolution ship detection network (HR-SDNet) for high-resolution SAR imagery is
proposed. The HR-SDNet adopts a novel high-resolution feature pyramid network (HRFPN) to take
full advantage of the feature maps of high-resolution and low-resolution convolutions for SAR image
ship detection. In this scheme, the HRFPN connects high-to-low resolution subnetworks in parallel
and can maintain high resolution. Next, the Soft Non-Maximum Suppression (Soft-NMS) is used to
improve the performance of the NMS, thereby improving the detection performance of the dense
ships. Then, we introduce the Microsoft Common Objects in Context (COCO) evaluation metrics,
which provides not only the higher quality evaluation metrics average precision (AP) for more
accurate bounding box regression, but also the evaluation metrics for small, medium and large targets,
so as to precisely evaluate the detection performance of our method. Finally, the experimental results
on the SAR ship detection dataset (SSDD) and TerraSAR-X high-resolution images reveal that (1) our
approach based on the HRFPN has superior detection performance for both inshore and offshore
scenes of the high-resolution SAR imagery, which achieves nearly 4.3% performance gains compared
to feature pyramid network (FPN) in inshore scenes, thus proving its effectiveness; (2) compared with
the existing algorithms, our approach is more accurate and robust for ship detection of high-resolution
SAR imagery, especially inshore and offshore scenes; (3) with the Soft-NMS algorithm, our network
performs better, which achieves nearly 1% performance gains in terms of AP; (4) the COCO evaluation
metrics are effective for SAR image ship detection; (5) the displayed thresholds within a certain range
have a significant impact on the robustness of ship detectors.

Keywords: ship detection; high-resolution SAR imagery; HR-SDNet; HRFPN; displayed thresholds;
TerraSAR-X

1. Introduction

The high-resolution synthetic aperture radar (SAR) images are provided by the airborne and
spaceborne SAR sensor with the capability of working in all-weather and all-day. Nowadays, these
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SAR images have been diffusely applied in multiple fields, such as environmental management, land
and resources administration, natural disaster forewarn, and national defense [1,2]. In particular, such
fields as maritime transport safety and fishery enforcement [3-5] tend to make use of the high-resolution
SAR images to ship detection, which is the main topic in this paper.

Ship detection in SAR imagery is a complicated problem, mainly containing two tasks to be solved.
One is the recognition problem, where the detectors separate the ships from the backgrounds and
set accurate ship class labels. Another is the location problem, assigning precise bounding boxes for
different ships. However, due to the complex background, the ships are difficult to detect accurately,
and the small ships are easy to be ignored, and the dense ships are difficult to distinguish, as shown
in Figure 1. Therefore, this paper focuses on an accurate and robust ship detection method for both
inshore and offshore scenes of high-resolution SAR imagery.

Figure 1. Examples of ships in the high-resolution SAR imagery.

Traditional ship detection approaches are mainly constant false alarm rates (CFAR) based
on the statistical distributions of the sea clutter [6-8] and the extracted features are based on the
machine learning method [9-12]. However, these conventional methods are highly dependent on
the distributions of features predefined by humans [9,13-15], degrading the performance of ship
detection for new SAR imagery [9,15]. Therefore, these methods are difficult to perform ship detection
accurately and robustly. In addition, many ship detection methods based on superpixels have been
proposed. Li et al. [16] came up with an improved superpixel-level constant false alarm rate (CFAR)
detection method. He et al. [17] proposed a method for automatically detecting ships using three
superpixel-level dissimilarity measures. Lin et al. [18] proposed a superpixel-level Fisher vector to
describe the difference between the target and clutter. However, it is also difficult for these methods to
accurately detect ships for both inshore and offshore scenes.

In recent years, the deep learning theory has been growing fast, leading to emerging breakthroughs
in object detection conducted by the researchers from the computer vision field. At present, deep
learning is viewed as the future tendency and plays an important role in object detection, and the
emerging algorithms can be roughly classified into two categories: (1) two-stage detection algorithm,
first generating region proposals that filter most of the negative samples, then performing the candidate
region classification (generally need to be refined for location). Typical examples of such algorithms are
region convolutional neural networks (R-CNN) algorithms based on region proposals, such as regions
with CNN features (R-CNN) [19], Fast R-CNN [20], Faster R-CNN [21], Feature Pyramid Networks
(FPN) [22], Mask R-CNN [23], Cascade R-CNN [24], etc.; (2) one-stage detection algorithm, getting rid
of the region proposal stage, directly detect the object by obtaining its coordinate values and the class
probability. The typical one-stage algorithms are You Only Look Once (YOLO v1-v3) [25-27], Single
Shot MultiBox Detector (SSD) [28], Deconvolutional Single Shot Detector (DSSD) [29], Feature Fusion
Single Shot Multibox Detector (FSSD) [30], RetinaNet [31], etc. In short, the two-stage algorithms have
higher accuracy than the one-stage, but the one-stage is faster and more simple to train.

Nowadays, researchers have already introduced the deep learning method for ship detection
in the SAR imagery field. Liu et al. [32] applied spectral residual based on land-sea segmentation
to realize automatic selecting the candidate ship location and convolutional neural networks to ship
discrimination. Kang et al. [33] designed a contextual region-based R-CNN with multilayer fusion
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to improve the performance of detecting the small ships. Kang et al. [34] proposed a modified faster
R-CNN method with CFAR to provide a solution to the multi-scale problem in small ship detection.
Li et al. [35] introduced the faster R-CNN method into the ship detection field with the additional four
strategies, such as feature fusion, while building up a ship-related dataset suitable for testifying the
new detection method. Wang et al. [36] used a single shot multi-box detector to acquire high-detection
accuracy as well as the relatively high speed and added transfer learning to the process to reduce
the false positives. Chang et al. [37] adopted YOLOV2 to detect ships in SAR images and reduced
the computational expenses. Wang et al. [3] aimed at the multi-scale problem and alleviated the
dependence of the statistical models or extracted features, exploiting a RetinaNet to obtain high ship
detection accuracy. Zhang et al. [38] proposed a Grid Convolutional Neural Network to solve real-time
detection problems. Cui et al. [1] came up with a dense attention pyramid network for multi-scale ship
detection in high-resolution SAR images.

However, the existing methods of SAR ship detection mainly use low-resolution representations
obtained by classification networks or recover high-resolution representations from low-resolution
representations for ship detection in SAR images. Therefore, these networks are not suitable for ship
detection at the region-level because the representation learning is characterized by low resolution and
the huge loss of resolution makes it difficult to obtain accurate prediction results in spatial accuracy.
Especially inshore and offshore scenes, the results are even worse. In this paper, a novel ship detection
method based on a high-resolution ship detection network (HR-SDNet) for high-resolution SAR
imagery is proposed.

First, a novel high-resolution feature pyramid network (HRFPN) is proposed to take full
advantage of the feature maps of high-resolution and low-resolution convolutions for SAR image ship
detection. The HRFPN connects high-to-low resolution subnetworks in parallel and can maintain the
high resolution.

Next, a region proposal network (RPN) [21,22] is used to generate candidate ship bounding
box proposals. Moreover, a cascade structure demonstrates its effectiveness on various tasks such
as object detection [24,39,40]. We will use a cascading structure to the SAR image ship detection
network for bounding boxes regression and classification to improve the quality of ship detection.
Furthermore, Soft Non-Maximum Suppression (Soft-NMS) [41] is used to improve the performance
of the NMS. It uses the linear penalty function to reduce the detection scores of all other neighbors,
thereby improving the detection performance of the dense ships.

Then, we introduce Microsoft Common Objects in Context (COCO) [42] evaluation metrics to
precisely evaluate the detection performance of our method. It includes not only the higher quality
evaluation metrics average precision (AP) for more accurate bounding box regression, but also the
evaluation metrics for small, medium, and large targets. Moreover, we analyze the effect of image
preprocessing on the robust performance of our detector by the clipping function of the displayed
image [43].

Finally, it is quite easy to exploit the HR-SDNet, and it can be used for end-to-end training. Our
results demonstrate that the proposed framework gains much better performance than the existing
state-of-the-art single-model ship detectors on the SSDD dataset [35], especially using the higher quality
evaluation metrics. Furthermore, the experiments on the TerraSAR-X [44] high-resolution images
from the strait of Singapore and Gibraltar prove that our method is effective and robust. In summary,
these results validate the effectiveness and robustness of our proposed method in the high-resolution
SAR imagery.

A summary of the main contributions of our work are as follows:

e The HRFPN takes full advantage of the feature maps of high-resolution and low-resolution
convolutions for SAR image ship detection. Furthermore, the HRFPN connects high-to-low
resolution subnetworks in parallel and can maintain the high resolution. Accordingly, the predicted
results are more precise in space compared with FPN, especially inshore and offshore scenes.
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e  Our proposed framework HR-SDNet is more accurate and robust than the existing algorithms for
ship detection in high-resolution SAR imagery, especially inshore and offshore scenes.

e  The Soft-NMS is used to improve the performance of the NMS. It uses the linear penalty function
to reduce the detection scores of all other neighbors, thereby improving the detection performance
of the dense ships.

e  Weintroduce COCO evaluation metrics to precisely evaluate the detection performance of our
method. It contains not only the higher quality evaluation metrics AP but also the evaluation
metrics for small, medium, and large targets.

e  We analyze the effect of image preprocessing on the robust performance of our detector by the
clipping function of the displayed image.

The organization of this paper is as follows. Section 2 relates to the proposed approach. Section 3
reports on the experiments, including the dataset and experimental analysis. Section 4 is a discussion.
Section 5 puts up a conclusion and future work.

2. The Methods

In this section, the proposed approach will be expounded in detail.

2.1. The Background of HRNet

Visual recognition generally consists of three major research problems: image-level (image
classification), region-level (object detection), and pixel-level (including image segmentation, human
pose estimation). In recent years, the convolution neural network for image classification has become
a standard structure to solve the problem of visual recognition, such as LeNet-5 [45], AlexNet [46],
VGGNet [47], GoogleNet [48], ResNet [49], DenseNet [50], etc., as shown by the red line in Figure 2.
The characteristic of such networks is that the representation learning gradually becomes smaller in
spatial resolution. This network does not apply to visual recognition at the region level and pixel level
because the representation learning is characterized by low resolution and the huge loss of resolution
makes it difficult to obtain accurate prediction results in spatial accuracy. Therefore, to compensate
for the loss of spatial precision, there are two main lines for computing high-resolution. One is to
recover high-resolution representations from low-resolution representations. Typical structures include
Hourglass [51], U-Net [52], FPN [22], etc., as shown by the green line in Figure 2. The other one is to
maintain high-resolution representations through high-resolution convolutions and strengthen the
representations with parallel low-resolution convolutions, e.g., high-resolution network (HRNet) [53,54],

as shown by the black line in Figure 2.
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Figure 2. The architecture of representation learning. The red line path indicates the low-resolution
representation learning network, and the black line and the green line paths indicate the high-resolution
representation recovering network.

Although it has a good semantic expression ability, the up-sampling itself cannot completely
compensate for the loss of spatial resolution. Therefore, we follow the research line of maintaining
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high-resolution representations and further study the HRNet, which has achieved promising and
remarkable results in human pose estimation [53]. The HRNet always maintains high-resolution
feature maps through the whole process of the network, gradually adding low-resolution convolutions,
and concatenating multi-resolution convolutions in parallel. At the same time, it improves the
expression of high-resolution and low-resolution representations by continuously exchanging
information between multi-resolution representations, allowing better mutual promotion between
multi-resolution representations. Thus, not only the high-resolution representation is enhanced but
also spatially accurate.

2.2. Detailed Description of the Network Architecture

As shown in Figure 3, the high-resolution ship detection network (HR-SDNet) has four components:
a high-resolution feature pyramid networks (HRFPN) as the backbone for feature extraction to build
a multi-level representation; an region proposal network (RPN) [21] for generating candidate object
bounding box proposals; three cascades Fast RCNN with thresholds U = {0.5,0.6,0.7} for bounding
box regression and classification; the Soft NMS [38] is executed as a post-processing step to obtain the
final ship detection results. Our proposed ship detection framework will be introduced in detail in
this section.

1x1 conv

3x3 convi

1x1 conv

RPN

Feature / .
Maps // Detection Results
Detection Network Soft-NMS

SAR Images Backbone Network

Figure 3. The architecture of the HR-SDNet method. Where “HRFPN” represents a feature extraction
network; “pool” indicates the region-wise feature extraction; “H” denotes the detection head; “B”
denotes the bounding box; “Cs” represents the classification, and “RPN” represents the proposals in
all architectures.

2.2.1. Backbone Network

Since HRNet was originally designed for human pose estimation, it cannot be directly applied to
ship detection. Hence, the HRNet is modified to make full use of the feature maps of high-resolution
and low-resolution convolutions for SAR image ship detection. The resulting network is named as
high-resolution feature pyramid networks (HRFPN), as illustrated in Figure 4.

A A A A A A A A A A A W2/
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|
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down 3rd stage
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Figure 4. The architecture of the HRFPN.
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According to Figure 4, the architecture of the HRFPN contains four stages of convolution blocks
with four parallel convolution streams and an HRFPN block. The 1st stage includes high-resolution
convolutions. The 2nd stage, 3rd stage, and 4th stage repeats two-resolution blocks, three-resolution
blocks, and four-resolution blocks, respectively. Starting from a stem, the network is comprised of two
strides—2 3 X 3 convolutions which reduce the resolution to % [53,54]. The first stage contains the same
four residual units [49,53,54] as ResNet-50, each of which is formed by a bottleneck with a width of 64,
and then a 3 X 3 convolution, thereby reducing the number of channels of feature maps to Cyy. The 2nd,
3rd, and 4th stages are made up of 1, 4, and 3 exchange blocks, respectively. The widths (number of
channels) of the convolutions of the four resolutions are Cyy,2Cy4Cyy.and 8Cyy respectively [53,54].
The four stages of convolution blocks have resolutions of %,%,11—6. and %, respectively. One exchange
block consists of four residual units [49,53,54], each of which contains two 3 X 3 convolutions and an
across-the-resolution exchange unit in each resolution. The batch normalization and the nonlinear
activation Rectified Linear Unit (ReLU) are performed after each convolution.

Figure 5 is a multi-resolution representation information exchange for three resolution inputs and
four resolution outputs. The output representation of each resolution can coalesce the representation
of the inputs of the three resolutions to ensure full utilization and interaction of the information.
When the high resolution is reduced to the low resolution, we use 3 X3 convolution with a stride of 2.
For up-sampling, the bilinear interpolation is used, and then a 1 X 1 convolution is performed to match
the number of channels. Besides, the representations of the same resolution are in the form of identity
mapping. The other multi-resolution representation information exchange in the HRFPN is similar to
Figure 5.

7

’ channel conv 3x3 conv
maps block stride 2
down 1x1 conv

upsample

\ sample ~ vpsample M upsample

Figure 5. Multi-resolution representations information exchange. The left to right graphs is the fusion
of the four resolutions from high to low. The red circle indicates the 3 X 3 convolution of stride 2 and
the green box indicates bilinear up-sampling followed by a 1 x 1 convolution.

As shown in Figure 6, we will describe the HRPPN block in the HRFPN in detail. First, we denote
the output of the four resolutions from high to low as {Cy, C3, C4, C5} and use {Py, P3, P4, P5} to represent
newly generated feature maps corresponding to {C;, C3,C4, Cs}, as shown in Figure 6. Then, the P,
aggregate the representations of all the up-sampling parallel convolutions. Specifically, the feature
maps P, are generated through bilinear up-sampling via C3, Cy4, Cs, respectively, and concatenate with
C> by 1 X 1 convolution. Finally, each building block takes a higher resolution feature map P; and
a coarser map C; through lateral connection and generates the new feature map P;, ;. Each feature
map P; first goes through a 3 x 3 convolution layer with stride 2 to reduce the spatial size. Then each
element of feature map C; that is down-sampled map is added through lateral connection. Where a
1 X 1 convolutional layer is attached to C;. The fused feature map is then processed by another 3 x 3
convolutional layer to generate P; 1 for the following a sub-network. This is an iterative process and
terminates after approaching Cs. Especially, a 1 X 1 convolutional layer is used to reduce the channel
dimension in each feature map. All convolutional layers are followed by a ReLU. In these building
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blocks, we consistently use channel 256 of the feature maps. The feature grid for each proposal is then
pooled from new feature maps.

RERC N
R .-
* R -

4th stage

i channel conv
I maps block
down
1
\ sample / upsample

Figure 6. The architecture of the HRFPN block.

In our experiments, HRFPN consists of one small network, one middle network, and one big
network: HRFPN-W18, HRFPN-W32, and HRFPN-W40, where 18, 32, and 40 represent the widths
(Cw) of the high-resolution subnetworks in the last three stages, respectively. Besides, we reduce
the dimension of the high-resolution representation to 144, 256, 320, respectively for HRFPN-W18,
HRFPN-W32, and HRFPN-W40 through a 1 X 1 convolution before forming the feature pyramid [53,54].
Therefore, the Cy, of the other three parallel subnetworks are 36, 72, 144 for HRFPN-W18, and 64, 128,
256 for HRFPN-W32, and 80, 160, 320 for HRFPN-W40.

2.2.2. Region Proposal Network (RPN)

As shown in Figure 3, RPN consists of a 3 X 3 convolutional layer and two 1 x 1 convolutional layers
to generate region proposals for classification and regression. The anchors are used as the reference
bounding boxes for classification and regression to generate candidate bounding boxes. Besides,
the anchors are of multiple pre-defined scales and aspect ratios to cover ships of different shapes.
In this way, the RPN can handle the ship of various sizes and aspect ratios. Following the statistical
results in SSDD data sets [35], the anchors can be assigned at different stages based on the anchor size.
More specifically, the anchors are assigned five stages {322, 642,1282%,2562, 5122} to {Py, P3, P4, Ps, Pg},
respectively. Considering the diverse scales of ships, various aspect ratios {1:2,1:1,2: 1} are also
adopted in each stage. Consequently, there are k = 15 different anchors over the pyramid in total. The
2k confidence scores and 4k outputs encoding the coordinates of k boxes are present in each proposal.
Moreover, the ratio of positive and negative samples should be set to 1 : 3 to train the entire network.

We assign training labels to the anchors based on their intersection over union (IoU) ratios with
ground-truth bounding boxes. Formally, an anchor is assigned a positive label if it has an IoU over 0.7
with any ground-truth box, and a negative label if it has an IoU lower than 0.3 for all ground-truth
boxes. Finally, the 2000 region of interest (Rol) is obtained for each image by top-N and Soft-NMS
operations on all proposals.
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2.2.3. Detection Network

Cascade is a classic yet powerful architecture that has boosted performance on various tasks
by multi-stage refinement. Cascade R-CNN [24,39,40] presents a multi-stage architecture for object
detection and achieves promising results. The success of Cascade R-CNN can be ascribed to two key
aspects: (1) progressive refinement of predictions and (2) adaptive handling of training distributions.
Therefore, the cascading structure in Cascade R-CNN is applied to the SAR image ship detection
network to improve the quality of ship detection.

The detection network comprises three stages, where the output of each stage is fed into the next
one for higher quality refinement. Moreover, the training data of each stage is sampled with increasing
IoU thresholds, which handle different training distributions [24]. According to the literature [25,39,40],
the output of a detector trained with a certain IoU threshold is a good distribution to train the detector
of the next higher IoU threshold. Therefore, the output of one stage is used to train the next stages,
which in turn trains the cascade of R-CNN stages. Accordingly, the same cascade procedure is applied
to achieve higher ship detection accuracy. Specifically, three cascades of Fast RCNN with thresholds
U = {0.5,0.6,0.7} [24,39,40] are used to accomplish final ship detection, as is shown in Figure 3.
The pooling layer by the RolAlign [23] is adopted to generate a fixed size of 7 X 7 features. Then, all the
7 x 7 features are flattened and release to fully connected layers for the final ship detection results.

2.2.4. Soft-NMS

Non-Maximum Suppression (NMS) is a significant portion of the ship detection network to
predict final ship detections from a set of location candidates, which effectively improves detection
performance. The existing detectors exploit a classification sub-network to assign class-specific scores
to these proposals while applying a parallel regression sub-network for refining their locations. This
refinement process improves the localization accuracy of the ships. Therefore, considering its significant
ability to reduce the number of false positives in the final set of detections, the NMS function is of vital
importance in state-of-the-art ship detection. [41].

However, zeroing the scores of neighboring detections is the major problem in NMS. In the
high-resolution SAR imagery, there are some dense ships in the coastal ports. In general, a ship will
be surrounded by other neighboring ships at times; hence, the bounding boxes of nearby ships may
appear in that overlap threshold. Therefore, the ship’s bounding boxes will be lost, and the average
precision will be decreased. Instead of eliminating all the lower scores surrounding bounding boxes,
to address this problem, Soft Non-Maximum Suppression (Soft-NMS) [41] uses the linear penalty
function to reduce the detection scores of all other neighbors, which is denoted as follows [41]:

o { s, IoU(M,b;) < u )
! six (1=IoU(M,b;)), IoU(M,b;) >u *

where s; is the detection scores; M indicates the maximum score detection box; b; represents the
detection box in the remaining detection boxes; IoU(M;, b;) calculates intersection-over-union between
two detection boxes; 1 denotes IoU threshold. The pseudo-code of the Soft-NMS algorithm is presented
in Figure 7 [41].
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Input: B= {bi,== xS = {81, ,8n),u
Biis the list of initial detection boxes
S contains corresponding detection scores
U is the NMS threshold

begin

D+ {}

while B # empty do

m<—argmax S

M<b

D«D\JM;B<~B—M
for b, in B do
if ToU(M,b;) =u then
| 5,8, X (1—IoU(M,b,))

end

end
end

return D, S

end

Figure 7. The pseudo-code of the Soft-NMS algorithm.

2.3. Loss Function

For an image, the overall loss function is as follows [20,24]:
L = Ry [h] + /\[]/ > 1]Rloc [f] (2)

where is the parameter to balance the loss of classification and regression. All experiments use A = 1.
[y > 1] is the Iverson bracket indicator function [20]. When [y > 1] the function equals to 1, otherwise
it equals to 0.

e Bounding box regression

b= (bx, by, bw, bh) andg = (gx, Sys 8ws gh) can denote the predicted bounding box and ground-truth
bounding box, respectively, which contains the four coordinates of an image patch x. Bounding box
regression uses the regressor f(x,b) to regress a candidate bounding box b into a target bounding box
g [24,39]. This is learned from a training set (g;, b;), by minimizing the risk.

Rioclf] = Y Lioc(f(xi,bi), 8;). @)
i
As in Fast R-CNN [20],
Lic(g b) = Z smoothLl(gj - b]-). 4)
jelx,yw,h)
where
0.5x2, x| <1

©)

|x| — 0.5, otherwise

smoothy, (x) = {

is the smooth L loss function. To encourage invariance to scale and location, smooth;, operates on the
distance vector A = (6x, Oy, Ow, 6;,) defined by [20,21,24]

Oy = (gx - bx)/bw/ 6y = (gy - by)/bh

6
10 = 10g(e0/bw), 65 = 10g(g1/by) ©

In addition, A = (6x, Oy, Ow, 6;1) needs to be normalized by its mean and variance [20,21].
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e C(Classification

The function h(x) which is the classifier can assign an image patch x to one of M + 1 categories,
where class 0 contains background and the remaining denotes the object detection categories.
The posterior distribution over classes is h(x), i.e., h(x) = p(y = k}x), where y is the categories
label. Given a training set (x;, y;), the classification risk can be minimized as follows:

Rcls [h] = Z Lcls (h(xi)l yl) (7)

where
Lcls (h(x)/ ]/) = _log hy(x) (8)

is the cross-entropy loss.

3. Experiments and Results

In this section, we will evaluate the ship detection approach for high-resolution SAR imagery.
We not only compare the ship detection performance in terms of average precision (AP) [42], and the
visualization results, but also test the robustness of our proposed method.

3.1. Dataset Description

The SAR ship detection dataset (SSDD) data sets [35] are used in the experiments. The SSDD
dataset draws on the construction process of The Pascal Visual Object Classes (PASCAL VOC)
datasets [55], including SAR images with different resolutions, polarizations, sea conditions, large sea
areas, and beaches. This dataset is a benchmark for researchers to evaluate their approaches. In SSDD,
there are 1160 images and 2540 ships in total. The average number of ships per image is 2.12. For SSDD,
the resolution of SAR images is as follows: 1 m, 3 m, 5 m, 7 m, and 10 m. The diversity of the resolution
ensures better adaptability in the trained model. Polarization is also diverse. Figure 8 gives a statistical
analysis of the SSDD data set. According to the reference [56], the area of the bounding box is divided
into five levels: extra-small (S, < 16> pixels), small (162<s?<322 pixels), middle (32%<s,<64? pixels),
large (64?<s,<96° pixels), and extra-large (pixels), where s, is the number of pixels in each bounding
box. As can be observed, much of the bounding box is on a small and middle scale. The aspect ratio of
the bounding box is also divided into five levels, and over 84.20% of them are distributed in 0.5-2.
The distribution of the aspect ratio can provide essential information for anchor-based models. What
is more, it is easy to resize the image due to the width and height of the statistical image to process the
image in batches.

Furthermore, to provide further confirmation, the previous models are evaluated on two real SAR
images from the Strait of Singapore and the Strait of Gibraltar. The SAR imagery was acquired from
the TerraSAR-X sensor [44], which has a resolution of 3 m. In order to analyze the inshore and offshore
scenes, we intercept areas of size 10269 x 6365, 10269 x 6365 in the Singapore Strait and Gibraltar
Strait, respectively. Detailed descriptions of two high-resolution SAR imagery are shown in Table 1
and Figure 9.

Table 1. The Information about the TerraSAR-X Imagery.

Satellite Waveband  Polarization  Resolution Time Position In;;og:lrelg
Strait of .
TerraSAR X HH 3m 2010-05-17 - Strip Map
Singapore
Strait of .
TerraSAR X HH 3m 2008-05-12 Strip Map

Gibraltar
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Figure 8. Statistical results of the SSDD. Statistical results of the training, testing, and the entire dataset
are depicted as bars with different colors. (a) the number of ships with different areas of the bounding
box; (b) the number of ships with a different aspect ratio of the bounding box; (c) the width and height
of the image.

(b)

Figure 9. Two optical remote-sensing images. (a) is the Strait of Singapore; (b) is the Strait of Gibraltar.
The fuchsia area is the TerraSAR-X sensor imaging area.
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3.2. Evaluation Metrics

To quantitatively evaluate the performance and robustness of the proposed frameworks, the
following metrics are widely used: intersection over union (IoU), precision, recall, and mean average
precision (mAP). As shown in formula (12), IoU is the overlap rate of the predict bounding box and
ground-truth generated by the model. The calculation formulas of precision and recall are as follows:

TP
Precision — — 1L
recision PP’ )
TP
Recall = ————. 1
T TPYEN (10)

where TP (True Positives) indicates the number of correctly detected ships; FN (False Negatives)
denotes the number of non-detected or missed ships; and FP (False Positives or false alarms) represents
the number of incorrectly detected ships.

For single class target ship detection, mean average precision (mAP) is defined by [55]:

1
mAP:f P(r)dr, (11)
0

where r represents recall and P(r) denotes the precision value that recall = r corresponds to. For ship
detection, the larger the value of mAP is, the better the detection performance of the ship is.

However, the mean average precision (mAP) does not fully reflect the performance of the object
detection framework. Compared to the mAP of PascalVOC [55], the Microsoft Common Objects in
Context (COCO) [42] includes not only the higher quality evaluation metrics, such as AP, APs), and
APy5 for more accurate bounding box regression, but also the evaluation metrics APy, APy, and APg
for large, medium, and small objects. Thus, COCO metrics are more objective and comprehensive for
object detection tasks.

In general, mAP is a default metric of precision in the PascalVOC competition [55], which is the
same as APsp [42] metric in the MS COCO competition. Besides, COCO metrics are standard and
widely used evaluation metrics in object detection tasks.

B, N Bg

IoU(By, Bg) = B, UB,’ (12)

For SAR ship detection, we leverage the standard COCO [42] metrics to quantitatively evaluate
the performance of the proposed framework, including AP, AP5q, AP75, APs, APy, APy, [42]. As can be
seen from Table 2, AP5g denotes the set threshold of IoU as 0.50; AP75 denotes that the threshold is set
as 0.75; AP indicates that the threshold of IoU is set from 0.50 to 0.95, where the step size is 0.05; APs is
set for small objects in which the area is smaller than 32%; APy is set for medium objects in which the
area is between 322 and 962; AP is set for large objects in which the area is bigger than 96. The larger
the value of AP is, the more accurate the prediction results in spatial accuracy are, and the better the
detection performance of the ship is. For APsy, when the IoU of the ground-truth and the predicted
box is greater than 0.5, the test case is predicted as a ship. Therefore, with a higher IoU threshold,
the bounding box regression will be better and the ship is well covered by the predicted bounding box.
So APy5 evaluates the accuracy of the bounding box regression better than AP5. The larger the value
of APys is, the more accurate the predicted bounding box is.
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Table 2. COCO Dataset Object Detection Evaluation Metrics [42].

Metrics Metrics Meaning
AP AP at IoU = 0.50: 0.05: 0.95
APs AP at IoU = 0.50
APy5 AP at IoU = 0.75
APg AP for small objects: area < 322
APy AP for medium objects: 32 < area < 962
AP AP for large objects: area > 962

3.3. Implementation Details

For the sake of fair comparison, the experiments and comparisons are implemented on
mmdetection [57], which is a well-known open-source deep learning framework and executed
on a personal computer (PC) with an Intel(R) i7-8700 CPU @3.20GHz, NVIDIA GTX-1080Ti GPU (11 GB
memory), and 64 GB RAM. The PC operating system is a 64-bit Ubuntu 16.04. In our experiment, the
SSDD data set is randomly divided into two parts: 70% for the training data set and 30% for the testing
data set. In order to validate our approach comprehensively and avoid overfitting, we expanded our
dataset by rotating and flipping the image to enhance the number of data sets.

3.3.1. Implementation Details of HR-SDNet

In our experiments, HRFPN consists of one small network, one middle network, and one big
network: HRFPN-W18, HRFPN-W32, and HRFPN-W40, respectively, as the backbone network
extraction features. The detection head of all baseline detectors in the HR-SDNet detection network
has the same architecture, which is composed of three cascades of Fast RCNN with thresholds
U = {0.5,0.6,0.7} for bounding boxes regression and classification. The IoU threshold of the Soft-NMS
is set to 0.5. The inference is made on a single image scale with no further bells and whistles.

We train detectors with GPUs for 20 epochs with an initial learning rate of 0.0025, and decrease it
by 0.1 after 16 and 19 epochs respectively, on one GPU of batch size two images. The weight decay and
momentum are set to 0.0001 and 0.9, respectively. Furthermore, we use SGD to optimize the model.
The input images by the bilinear interpolation are resized to have 600px along the short axis and a
maximum of 1000 px along the long axis for training and testing. The entire detector uses multi-task
loss. In addition, the entire network is end-to-end training as a whole. For other parameters, we follow
the hyperparameter setting in reference [39,40,57,58].

3.3.2. Compared Approaches

To test the performance of HR-SDNet, the comparative experiments were implemented using
multiple popular single-model baselines: Faster R-CNN [21], RetinaNet [31], Mask R-CNN [23] and
Cascade R-CNN [24] with ResNet-FPN [58] backbone or ResNext -FPN [59] backbone, YOLOvV2 [25]
with Darknet-19, for the task of ship detection. These baselines have a wide range of performance.
We use its default settings unless otherwise noted and use the end-to-end training for the entire
detector. Faster R-CNN, RetinaNet, Mask R-CNN, and Cascade R-CNN use the same parameter
settings [25,39,40]. Besides, the YOLOV2 generates five anchors by k-means clustering, the anchor
setting of other models is consistent with the HR-SDNet proposed in this paper.

We train the detectors with a GPU for 12 epochs with an initial learning rate of 0.0025 and decrease
it by 0.1 after eight and 11 epochs, respectively. The weight decay and momentum are set to 0.0001 and
0.9, respectively. The input images by the bilinear interpolation are resized to have 600 px along the
short axis and a maximum of 1000 px along the long axis for training and testing. For other parameters,
we follow the hyperparameter setting in reference [57].
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3.4. Experimental Results and Analysis of HR-SDNet

3.4.1. Effect of the HRFPN

The comparison results of FPN and HRFPN in the inshore and offshore scenes are shown in
Figure 10. We use Cascade R-CNN as a strong baseline to implement our method and a comparison
method. In complex inshore scenes, FPN has more missed ships. Compared with FPN, the HRFPN is
more accurate in the bounding box regression. It is worth noting that the ship detection performance
of the HRPFN is superior to the original FPN and provides a very powerful baseline, whether inshore
or offshore scenes.

Figure 10. Comparison results of FPN and HRFPN in the inshore and offshore scenes. Row 1 is the

result of FPN; Row 2 is the result of HRFPN. Red boxes denote predicted results; green boxes denote
the ground-truth.

As can be observed from the results in Table 3, the HRFPN performs better than FPN, with smaller
parameters and less computational complexity in the cascade R-CNN framework, especially for inshore
or offshore scenes. Looking at the various indicators in offshore scenes, except for the significant
improvement of APys, the remaining indicators have not improved much, indicating that HRFPN is
more accurate than FPN for bounding box regression under the same detection capability. Moreover,
the AP value is 53.6% for inshore scenes, which achieves nearly 4.3% performance gains compared to
FPN. It is shown that our method significantly improves the ship detection performance for inshore
scenes and obtains more accurate prediction results in spatial accuracy. The AP5y and AP75 values are
88.7%, 56.9% for inshore scenes, compared to FPN, which achieves a gain of 3.6%, 8.2%, respectively.
The results show that the bounding box regression will be better and more accurate. For APs, APy,
APy, they have also been significantly improved. It is shown that the detection performance has
been significantly improved for small, medium, and large ships in inshore scenes. Therefore, HRFPN
is effective.

Table 3. Effect of the HRFPN in the Inshore and Offshore Scenes.

Backbone Param (M)  Test Speed Scenes AP APy APy;3 AP APy APL
Inshore 46.7 80.6 484 40.1 53.5 51.3

ResNet-50-+FPN 5526 009 Offshore 648 986 760 592 742 634
ResNetOLEPN 7048 omas GEee TR 000 D DL Aa
ResNext-101+64x4d+FPN  1024.0 0.164s g;z;‘::e ég:: ggj ég; g:i §2:3 22:?
HRFPN-W1S A Y v A oy A S St
HRFPN-W32 WL 0095 QENt Ged o5 90 e 71 eod
HREPN-WAO 8 0105 Inshore  53.6 887 569 461 59.6 7438

Offshore 66.6 98.8 79.5 60.5 75.0 60.6
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In the HRFPN structure, compared with HRFPN-W18 and HRFPN-W32, our HRFPN-W40 has
better performance, but it also increases the parameters and computational complexity.

In summary, the HRFPN, which maintains the high resolution and takes full advantage of the
feature maps of the high-resolution and low-resolution convolutions, can effectively improve the
ship detection performance for SAR images and makes the predicted results more accurate in space,
especially for inshore or offshore scenes. Therefore, HRFPN is effective.

3.4.2. Results of the HR-SDNet

The ship detection results of the proposed method in the inshore and offshore scenes are shown in
Figure 11. The red box indicates the prediction result, and the green box indicates the ground-truth.
It can be seen from Figure 11; the HR-SDNet has superior detection performance for both inshore and
offshore scenes of the high-resolution SAR imagery.

Figure 11. Ship detection results of the proposed method in the inshore and offshore scenes. Red boxes

denote predicted results; green boxes denote ground-truth.

As can be seen from Table 4, the proposed network, based on HRFPN-W18, HRFPN-W32, and
the HRFPN-W40 backbone, has the best performance, which achieves a gain of 1.7%, 2.1%, and 0.9%
in terms of AP for ResNet-50+FPN, ResNet-101+FPN, and ResNext-101+64x4d+FPN, respectively.
It is shown that our method improves the ship detection performance and obtains more accurate the
prediction results in spatial accuracy. Moreover, The AP75 value of HRFPN-W18, HRFPN-W32, and
HRFPN-W40 backbone are 72.1%, 74.3%, 74.3%, respectively, which achieves a gain of 1.4%, 3.9%, 4%
for ResNet-50+FPN, ResNet-101+FPN, and ResNext-101+64x4d+FPN, respectively. The APs5 has also
been greatly improved. The results show that the bounding box regression will be better, and the ship
is well covered by the predicted bounding box. For APg, APy, APy, they have also been significantly
improved. It is shown that the detection performance has been improved for small, medium, and
large ships. In the HRFPN structure, our HRFPN-W40 performance is better with the AP value of
63.7%, compared to HRFPN-W18 and HRFPN-W32, which bring 0.7% and 0.2% gain in terms of AP,
respectively. Therefore, it can be inferred that the proposed HRFPN modules play an important role in
improving detection performance, especially satisfying the detection results for the ships.
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Table 4. Results on SSDD for HR-SDNet which use NMS as a Baseline and the Soft-NMS Method.

Backbone Method AP APsy AP75 APg APm APy,
NMS 613 956 707 565 690 530

ResNet-50+FPN Soft-NMS 627 96.2 73.4 57.6 70.5 56.9
NMS 614 960 704 567 681 683

ResNet-101+FPN SoftNMS 627 967 719 577 696 70.0
NMS 628 965 703 573 703 616

ResNext-101+64x4d+FPN ¢ v \\s 639 965 729 58.4 716 641
NMS 630 961 721 57.3 714 630

HRFPN-W18 SoftNMS 639 968 731 582 723 65.0
NMS 635 963 743 580 71.0 66.1

HRFPN-W32 SoftNMS 645  97.0 760 588 72.0 67.7
NMS 637 973 743 583 712 706

HRFPN-W40 SoftNMS 646  97.9 75.9 59.0 723 72.0

In addition, some ships are closely aligned and dense in coastal ports, and the IoU of their
bounding boxes easily reach the overlap threshold, which causes adjacent ships to be suppressed in
NMS. Hence, Soft-NMS is used to improve the performance of the NMS. With the Soft-NMS algorithm,
our network performs better, which achieves nearly 1% performance gains in terms of AP in Table 4.
It can be seen from Table 4 that our model with Soft-NMS can significantly improve AP, thus improving
the detection performance of neighboring ships and demonstrating its effectiveness.

3.5. Comparison with the State-of-the-Art

To further demonstrate the detection performance of the proposed network, the qualitative results
between our approach and the five compared methods are shown in Figure 12, where the green boxes
denote the ground-truth of the ship, the red boxes indicate the predicted results of ship detection.
Row 1 is the ship detection results of YOLOv2; Row 2 is the ship detection results of RetinaNet; Row 3
is the ship detection results of Faster R-CNN; Row 4 is the ship detection results of Mask R-CNN; Row
5 is the ship detection results of Cascade R-CNN; Row 6 is the ship detection results of HR-SDNet.
Column 1 and Column 2 is the offshore scenes; Others are the inshore scenes.

As shown in Figure 12, compared to the state-of-the-art single-model detectors, our method can
accurately detect the ships in a different scene. Specifically, the ship is covered well with predicted
bounding boxes. For closely aligned and dense ships in coastal ports, our method gets a great detection
performance improvement. For small ships in the offshore scenes, YOLOv2 and RetinaNet have more
missed ships, and our method can accurately detect the ships because the network is able to learn
enough high-resolution representations successfully. Compared to Faster R-CNN and Mask R-CNN,
our approach has almost no false alarm. Compared to Cascade R-CNN, our approach is more accurate
in the bounding box regression. The results on the SAR ship SSDD dataset reveal that our approach
is practical for ship detection of high-resolution SAR imagery and achieves a better ship detection
performance than the existing approaches.

To quantitatively evaluate the performance of the proposed models, the HR-SDNet, based on
HRFPN backbone and the Soft-NMS algorithm, is compared with the state-of-the-art single-model ship
detectors on the SSDD data set in Table 5. The first group of detectors in Table 5 is one-stage detection
algorithms; the second group is two-stage detection algorithms, and the last group is multi-stage
detection algorithms. The HR-SDNet outperformed all single-model detectors by a large margin,
under all evaluation metrics. This includes the single-model entries of YOLOV2 [26], RetinaNet [31],
Faster R-CNN [21], Mask R-CNN [23] and Cascade R-CNN [24]. For a better understanding of Table 5,
we visualize the results using a bar chart in Figure 13, where the red, green and blue bar chart represents
AP, AP5y and AP75 of the state-of-the-art single-model detectors, respectively.
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Figure 12. Ship detection results of the different models in the SSDD dataset. Row 1 is the result of
YOLOV2; Row 2 is the result of RetinaNet; Row 3 is the result of Faster R-CNN; Row 4 is the result of
Mask R-CNN; Row 5 is the result of Cascade R-CNN; Row 6 is the result of HR-SDNet. Column 1 and
Column 2 is the offshore scenes; Others are the inshore scenes. Red boxes denote predicted results;

green boxes denote ground truth.

Table 5. Comparison with state-of-the-art Single-Model Detectors in the SSDD Data Set.

Param Test
Model Backbone ™) Speed AP APsy AP;3 APs APy APL
YOLOv2 Darknet-19 197.0 0.020s 50.4 92.9 48.3 52.4 52.5 54.9
RetinaNet ResNet-50+FPN 290.0 0.075s 58.5 94.1 65.0 54.2 65.8 52.0
RetinaNet ResNet-101+FPN 4423 0.078s 58.3 93.8 65.5 54.0 65.5 55.0
Faster R-CNN ResNet-50+FPN 330.2 0.063s 59.5 96.2 67.0 55.5 66.3 46.9
Faster R-CNN ResNet-101+FPN 482.4 0.075s 59.7 95.5 66.4 55.3 66.3 48.1
Mask R-CNN ResNet-50+FPN 351.2 0.069s 60.5 96.3 70.0 56.7 67.4 479
Mask R-CNN ResNet-101+FPN 503.4 0.080s 60.8 95.9 69.4 56.0 68.6 49.0
Cascade R-CNN  ResNet-50+FPN 552.6 0.099s 61.3 95.6 70.7 56.5 69.0 53.0
Cascade R-CNN  ResNet-101+FPN 704.8 0.112s 61.4 96.0 70.4 56.7 68.1 68.3
HR-SDNet HRFPN-W18 439.7 0.083s 63.9 96.8 73.1 58.2 72.3 65.0
HR-SDNet HRFPN-W32 598.1 0.095s 64.5 97.0 76.0 58.8 72.0 67.7
HR-SDNet HRFPN-W40 728.2 0.103s 64.6 97.9 75.9 59.0 72.3 72.0
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Figure 13. Comparison with the state-of-the-art single-model detectors on the SSDD data set. The red,
the green, and blue bar chart represent AP, AP5y, and APy5 of the state-of-the-art single-model
detectors, respectively.

As can be seen from Table 5 and Figure 13, the proposed approach has the best performance with
the AP value of 64.6%. Compared with YOLOv2 and RetinaNet, the HR-SDNet achieves gains of
14.2% and 6.1%, respectively. Compared with Faster R-CNN, Mask R-CNN, and Cascade R-CNN,
the HR-SDNet achieves gains of 4.9%, 3.8%, and 3.2%, respectively. As a consequence, our method
has better detection performance, and more accurate prediction results in spatial accuracy than other
ship detection methods on SSDD. Additionally, the APsg value of HR-SDNet is 97.9%, which achieves
nearly 2% performance gains. The AP75 value of HR-SDNet is 75.9%, which achieves a gain of 8.9%,
5.9%, and 5.2% for Faster R-CNN, Mask R-CNN, and Cascade R-CNN, respectively. Compared
with YOLOv2 and RetinaNet, the HR-SDNet achieves gains of 27.6% and 10.4%, respectively. The
results show that the bounding box regression will be better and more accurate than the existing
algorithms for ship detection. For small, medium, and large ships, compared with other detection
algorithms, the HR-SDNet has also been significantly improved in terms of APs, APy, AP;. Among
them, the performance improvement of large ships is the most obvious. Compared to one-stage,
two-stage, and multi-stage detection algorithms, HR-SDNet achieves a gain of 17%, 23%, and 3.3% in
terms of APy, respectively. It implies that HRFPN can greatly improve the detection performance and
is effective.

As can be seen from Table 5, compared to one-stage, two-stage detection algorithms, our
models have better performance, but it also increases the parameters and computational complexity.
Additionally, the HR-SDNet performs better than Cascade R-CNN, with smaller parameters and less
computational complexity. Therefore, it also proves the advantages of our network.

Figure 12 and Table 5 can reflect that the higher the AP, AP5), and AP7s5, the better the performance
of the ship detector, and the more accurate the predicted bounding boxes. The higher the APg, APy,
and APy are, the better detection performance for small, medium, and large ships is. It shows that the
COCO evaluation metrics are effective for SAR image ship detection.

As can be seen from Table 6, the AP value of HR-SDNet is 53.6% for inshore scenes, which achieves
a gain of 9.1%, 8.6%, and 5.7% for Faster R-CNN, Mask R-CNN, and Cascade R-CNN, respectively.
As a consequence, compared with other ship detection methods on SSDD, our method significantly
improves the ship detection performance for inshore scenes and obtains more accurate prediction
results in spatial accuracy. Additionally, the APsy value of HR-SDNet is 88.7%, which achieves a
gain of 8.9%, 8.9%, and 4.9% for Faster R-CNN, Mask R-CNN, and Cascade R-CNN, respectively.
The APy75 value of HR-SDNet is 56.9%, which achieves a gain of 14.8%, 11.5%, and 8.5% for Faster
R-CNN, Mask R-CNN, and Cascade R-CNN, respectively. The show that the bounding box regression
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will be better and more accurate than the existing algorithms for ship detection in inshore scenes.
For small, medium, and large ships, compared with other detection algorithms, the HR-SDNet achieves
nearly 6-8%, 6-7%, and 23-26% performance gains in terms of APg, APy, APy, respectively. Among
them, the performance improvement of large ships is the most obvious. It is shown that the detection
performance has been significantly improved for small, medium, and large ships in inshore scenes.
Looking at the various indicators in offshore scenes in Table 6, except for the significant improvement
of AP and APy, the remaining indicators have not improved much, indicating that our method is
more accurate than other ship detection methods for bounding box regression. Compared with the
Dense Attention Pyramid Networks (DAPN) [1] proposed by Cui et al., our method performs better
and achieves a gain of 21.2% in terms of APs5 for inshore scenes. It implies that HRFPN can greatly
improve the detection performance and is effective.

Table 6. Comparison with the state-of-the-art Single-Model Detectors in the Inshore and Offshore
Scenes on the SSDD Data Set.

Model Backbone Scenes AP AP5y APy APg APy APy,
Inshore 432 790 421 366 518 432

Faster ResNet-50+FPN  5erhore 631 986 733 584 709  60.0

R-CNN Inshore 44.5 79.8 42.0 37.8 51.6 479

ResNet-10I+FPN  Gffhore 630 977 725 581 711 550

Inshore 45.0 79.8 43.7 37.8 53.7 44.8

Mask ResNet-50+FPN  epore 639 987 763 597 715 60.1
R-CNN Inshore 44.6 77.6 45.4 38.8 50.7 45.3
ResNet-101+FPN  qeehore 643 985 748 586 736 601

Inshore 46.7 80.6 48.4 40.1 53.5 51.3

ResNet-50+FPN

Cascade Offshore 64.8 98.6 76.0 59.2 74.2 63.4
R-CNN Inshore 47.9 83.8 46.7 40.1 535 51.3
ResNet-101+FPN  oeenore 647 987 764 594 734 60.1

Inshore - 67.5 - - - -

DAPN [1] DFPN-CON Inshore ] 95.9 ] ] } )
Inshore 50.7 84.7 54.2 42.6 57.8 66.3
HRFPN-W18 Offshore 66.1 98.7 76.7 60.2 75.8 60.1
Inshore 51.0 84.6 54.0 42.5 57.5 67.3
HR-SDNet HRFPN-W32 Offshore 66.4 98.7 79.0 60.6 75.1 63.4
HRFPN-W40 Inshore 53.6 88.7 56.9 46.1 59.6 74.8

Offshore 66.6 98.8 79.5 60.5 75.0 60.6

In summary, compared to the state-of-the-art single-model detectors, our method based on HRFPN
significantly improves the ship detection performance in SAR images and obtains more accurate
prediction results in spatial accuracy, especially for inshore or offshore scenes. This is because the
HRFPN maintains the high resolution and takes full advantage of the feature maps of high-resolution
and low-resolution convolutions. At the same time, it also shows that the COCO evaluation metrics
are effective for SAR image ship detection.

3.6. Robustness Analysis

In SAR image processing, the image is generally displayed by a clipping function after processing
the SAR image. To analyze the effect of image preprocessing on the robust performance of our detector,
we define the clipping function of the image displayed. The clipping function is divided into linear
and logarithmic changes, which is denoted as follows:

(13)

. kx,0 < x < B x max(x)
y= { B x max(x),x > B x max(x)
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| In(x),In(x) > a
- { a,In(x) <a (14

where k indicates the penalty factor and we set k = 1. x and y represent input and output images,
respectively. We follow the hyperparameter setting in the literature [43]. We set @« = —20dB, —-30dB, =
0.008,0.02,0.05.

In this paper, the SAR images from the Strait of Singapore and the Strait of Gibraltar are annotated
by the LabelMe open source project on GitHub [60-63], which is currently the most widely used
annotation tool. In the annotation, some targets are very small and only a few pixels, and it is difficult
for the naked eye to distinguish between ships and speckle noise. Therefore, we consider the number
of pixels greater than 10 as the ship’s pixels and label them.

Figure 14 shows the ship detection results in the TerraSAR-X test image. These SAR images are
partial images of the Singapore Strait and Gibraltar Strait. Row 1 is the result of 0.008; Row 2 is the
result of 0.02; Row 3 is the result of 0.05; Row 4 is the result of —20 dB; Row 5 is the result of —30 dB.
Red boxes denote predicted results; green boxes denote ground-truth.

As can be seen from Figure 14 and Table 7, compared with the linear threshold, the results under
the logarithmic threshold are poor, and there are many missed ships. This may be because the difference
between the ship and the background under the logarithmic threshold is not particularly obvious,
causing the insensitiveness of the detector to these ships.

Table 7. Quantitative results of ship detection in the TerraSAR-X test images. Where TP indicates the
number of correctly detected ships; FN denotes the number of non-detected or missed ships; and FP
represents the number of incorrectly detected ships.

Threshold Ground Truth TP FN FP Recall Precision

0.008 58 44 14 0 75.86% 100%
0.02 58 52 6 0 89.66% 100%
0.05 58 39 19 2 67.24% 95.12%

—20dB 58 22 36 2 37.93% 71.67%
-30dB 58 15 43 0 25.86% 100%

In the linear threshold, the contrast of the SAR image changes significantly with the change of the
threshold. Compared with the linear threshold g = 0.008 and = 0.05, the results of the threshold
B = 0.02 SAR image is obviously better. In the threshold of 0.05, due to the extreme darkness of the
SAR image, some ships are missing. In the range of 0.008 to 0.02, the detection results are relatively
good. It can be inferred that the displayed thresholds within a certain range have a significant impact
on the robustness of the ship detectors. Therefore, we chose the threshold g = 0.02 to process the
TerraSAR-X images as the final ship detection SAR imagery.

Figures 15 and 16 indicates the qualitative result on the TerraSAR-X test image with a threshold of
0.02 from Strait of Singapore and Strait of Gibraltar, respectively, where the green boxes represent the
ground-truth of the ship, the red boxes indicate the predicted results of ship detection. In order to see
the ship detection results more obviously, we magnify the two small areas represented by the cyan
rectangles in Figures 15 and 16, respectively. From Figures 15 and 16, we can draw brief a conclusion:
(1) most ships have been correctly detected, and the ship is well covered by the predicted bounding box,
whether inshore or offshore scenes, indicating that our approach is practical and robust. (2) the ships
are small and dense in complex environments for inshore scenes, and our approach still accomplishes
better detection performance, which indicates that our approach is effective and robust for dense and
small ships. (3) Although there are a few false alarms on land, they look very similar to the ship and
have little impact on our results. (4) there are some false alarms in the offshore scene, but these targets
are very small, and only a few pixels and lack sufficient information, making it is difficult for the naked
eye to distinguish between ships and speckle noise. Therefore, we will default them to false alarms,
which will cause the performance of our method to degrade.
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(a)

Figure 14. Ship detection results in the TerraSAR-X test image. Row 1 is the result of 0.008; Row 2 is
the result of 0.02; Row 3 is the result of 0.05; Row 4 is the result of —20 dB; Row 5 is the result of —30 dB.
(a) Partial result of HR-SDNet in the Strait of Gibraltar; (b) Partial the result of HR-SDNet in the Strait
of Singapore. Red boxes denote predicted results; green boxes denote ground-truth.
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Figure 15. Ship detection results with the HR-SDNet on the real SAR image from the Strait of Gibraltar.
(Red boxes denote predicted results; green boxes denote ground-truth).
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Figure 16. Ship detection results with the HR-SDNet on the real SAR image from the Strait of Singapore.
(Red boxes denote predicted results; green boxes denote ground-truth).

4. Discussion

4.1. Choice of Contrasting Backbone Networks

We compare the HRFPN with the multiple popular baseline ship detectors on the SSDD dataset
in Table 8. We use Cascade R-CNN as a strong baseline to implement our method and comparison
method. As can be seen from Table 8, comparing to the ResNet-50+C4, it achieves a gain of 1.4%, 1.6%,
1.5%, 3%, and 2.9% in terms of AP for ResNet-50+FPN, ResNext-50+32x4d+FPN, ResNet-101+FPN,
ResNext-101+32x4d+FPN, and ResNext-101+64x4d+FPN [21,49,59,60], respectively. It is worth
noting that the FPN [19] implementation is superior to the original C4 [21,22] and provides a very
powerful baseline.
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Table 8. Detailed Comparison of Multiple Popular Baseline Ship Detectors on the SSDD.

Backbone Param (M) Test-Speed AP AP5y APy APg APm APy,
ResNet-50+C4 263.7 0.625 s 59.9 93.8 68.5 55.2 67.0 64.6
ResNet-50+FPN 552.6 0.099 s 61.3 95.6 70.7 56.5 69.0 53.0
ResNet-50+FPN+DCN2 557.3 0.097 s 61.8 96.6 70.3 56.8 69.1 55.7
ResNext-50+32x4d+FPN 548.5 0.109 s 61.5 95.6 71.6 56.9 69.2 52.0
ResNet-101+FPN 704.8 0.112s 614 96.0 70.4 56.7 68.1 68.3
ResNet-101+FPN+DCN2 715.1 0.123 s 62.1 95.7 70.2 56.3 70.5 62.6
ResNext-101+32x4d+FPN 702.0 0.129 s 62.9 96.7 72.5 57.9 70.6 56.4
ResNext-101+64x4d+FPN 1024.0 0.164 s 62.8 96.5 70.3 57.3 70.3 61.6
HRFPN-W18 439.7 0.083 s 63.0 96.1 72.1 57.3 714 63.0
HRFPN-W32 598.1 0.095 s 63.5 96.3 74.3 58.0 71.0 66.1
HRFPN-W40 728.2 0.103 s 63.7 97.3 74.3 58.3 71.2 70.6

However, the HRFPN performs better than FPN, with smaller parameters and less computational
complexity in the Cascade R-CNN framework. As can be seen from Table 8, the proposed network,
based on HRFPN-W18, HRFPN-W32, and HRFPN-W40 backbone, has the best performance, which
achieves a gain of 1.7%, 2.1%, and 0.9% in terms of AP for ResNet-50+FPN, ResNet-101+FPN, and
ResNext-101+64x4d+FPN, respectively. Moreover, the AP75 values of HRFPN-W18, HRFPN-W32,
and HRFPN-W40 backbone are 72.1%, 74.3%, 74.3%, respectively, which achieves a gain of 1.4%,
3.9%, 4% for ResNet-50+FPN, ResNet-101+FPN, and ResNext-101+64x4d+FPN, respectively. In the
HRFPN structure, our HRFPN-W40 performance is better with the AP value of 63.7%, compared
to HRFPN-W18 and HRFPN-W32, which brings 0.7% and 0.2% gain in terms of AP, respectively.
Therefore, it can be inferred that the proposed HRFPN modules play an important role in improving
the detection performance, especially satisfying the detection results of the ships. Additionally, we add
deformable convolutional networks v2(DCN2) [61,62] to Cascade R-CNN to analyze its impact on the
ship detection results. From Table 7, it improves the performance by 0.5% and 0.7% in terms of AP for
ResNet-50+FPN and ResNet-101+FPN, respectively.

According to the detection performance, parameter quantity, and calculation complexity,
we compare HRFPN-W18, HRFPN-W32, and HRFPN-W40 with ResNet-50+FPN, ResNet-101+FPN,
and ResNext-101+64x4d+FPN in this paper, respectively.

4.2. Further Robustness Analysis and Choice of Threshold

In Figure 14 in Section 3.6, we used a small portion of the TerraSAR-X images from the Singapore
Strait and Gibraltar Strait as the test images. Then we analyzed the effects of the five thresholds on the
ship detection performance through these images and selected the best one to test the original images.
As a result, we found more false alarms on land. Therefore, in order to further analyze the impact of
threshold on robust performance, we chose eight thresholds to directly analyze the original image,
as shown in Figure 17. Specifically, Figure 17 shows the ship detection results in the TerraSAR-X test
image from the Strait of Singapore. (a) is the result of 0.008; (b) is the result of 0.01; (c) is the result of
0.02; (d) is the result of 0.03; (e) is the result of 0.05; (f) is the result of 0.1; (g) is the result of —20 dB; (h)
is the result of —30 dB. Red boxes denote predicted results, and green boxes denote ground-truth.
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(8) (h)

Figure 17. Ship detection results in the TerraSAR-X test image from the Strait of Singapore. (a) the
result of 0.008; (b) the result of 0.01; (c) the result of 0.02; (d) the result of 0.03; (e) the result of 0.05;
(f) the result of 0.1; (g) the result of —20 dB; (h) the result of —30 dB. Red boxes denote predicted results,
and green boxes denote ground-truth.
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As can be seen from Figure 17, compared with the results under the linear threshold, our method
is less robust under the logarithmic threshold. There are a lot of false alarms and missed ships. Among
the linear threshold, the thresholds of 0.03, 0.05, and 0.1 have a large number of false alarms on the
land, and some ships are missed in offshore and inshore scenes. The threshold of 0.02 has a small
number of false positives on land, and a small number of ships are missed in offshore and inshore
scenarios. However, the thresholds of 0.008 and 0.01 have almost no false alarms on land, and a small
number of ships can be missed in offshore and inshore scenarios. Therefore, the threshold of 0.008
to 0.02 is better for the ship detection performance; thus, confirming the conclusion in Section 3.6.
It can be inferred that the displayed thresholds within a certain range have a significant impact on the
robustness of ship detectors.

From Figure 17, we can further draw brief a conclusion: (1) most ships have been correctly
detected, and the ship is well covered by the predicted bounding box, whether inshore or offshore
scenes, indicating that our approach is practical and robust. (2) the ships are small and dense in complex
environments for inshore scenes, and our approach still accomplishes better detection performance,
which indicates that our approach is effective and robust for dense and small ships. (3) Although
there are a few false alarms on land, they look very similar to the ship and have little impact on our
results. (4) there are some false alarms in the offshore scene, but these targets are very small, and only
a few pixels and lack sufficient information, making it is difficult for the naked eye to distinguish
between ships and speckle noise. Therefore, we will default them to false alarms, which will cause the
performance of our method to degrade.

5. Conclusions

In this paper, we propose a novel ship detection method based on HR-SDNet for ship detection
in high-resolution SAR images. The HR-SDNet adopts a novel HRFPN to make full use of the
feature maps of high-resolution and low-resolution convolutions for SAR image ship detection. In
this way, the HRFPN connects high-to-low resolution subnetworks in parallel and can maintain
the high-resolution. We can conclude the experimental results on SSDD dataset and TerraSAR-X
high-resolution images: (1) our approach based on HRFPN has superior detection performance for
both inshore and offshore scenes of the high-resolution SAR imagery, which achieves nearly 4.3%
performance gains compared to FPN in inshore scenes; thus, proving its effectiveness; (2) compared with
the existing algorithms, our approach is more accurate and robust for ship detection of high-resolution
SAR imagery, especially inshore and offshore scenes; (3) with the Soft-NMS algorithm, our network
performs better, which achieves nearly 1% performance gains in terms of AP; (4) the COCO evaluation
metrics is effective for SAR image ship detection; (5) the displayed thresholds within a certain range
have a significant impact on the robustness of ship detectors.

Future work: our future work will focus on ship instance segmentation for high-resolution
SAR imagery.
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