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ABSTRACT Compressed sensing (CS) algorithms are used for linear array synthetic aperture radar
(LASAR) three-dimensional (3D) imaging. However, it is difficult to obtain imaging results with both
high computational efficiency and promising imaging quality. Because of the high-dimensional matrix-
operations, the computational complexity of several CS algorithms is huge such as the iterative adaptive
approach (IAA), bayesian compressed sensing (BCS), and sparsity bayesian recovery via iterative minimum
(SBRIM) algorithm. Besides, the greedy pursuit algorithms such as the orthogonal matching pursuit (OMP)
algorithm cannot acquire ideal imaging results on account of the preset sparsity of the imaging scene. To
solve the problem, we present a fast sparse recovery algorithm via resolution approximation (FSRARA)
in this paper. Firstly, the whole imaging scene is divided into 3D scattering units with large spacing, and
SBRIM algorithm is used to obtain its low-resolution imaging results quickly. Secondly, the low-resolution
imaging results are conducted image segmentation by the fuzzy c-means (FCM) clustering algorithm
to extract the possible targets’ areas coarsely. Then we re-divide the imaging scene by higher imaging
resolution and extract the possible targets’ areas according to the coarsely possible targets’ areas. FSRARA
achieves improved computational efficiency with low-dimensional matrix-operations on the possible targets’
areas instead of the high-dimensional one on the whole imaging scene. Meanwhile, FSRARA performs
better in suppressing the false targets and sidelobe interference and improves the imaging quality than the
SBRIM algorithm. Simulation and experimental results prove that FSRARA improves the computational
efficiency by hundreds of times at most than SBRIM algorithm and its computational efficiency is higher
than smoothed L0 norm (SL0), IAA, and BCS algorithm. Besides, FSRARA improves the imaging quality
compared with OMP, IAA, SL0, BCS, and SBRIM algorithms.

INDEX TERMS Compressed sensing, LASAR 3D imaging, Fast sparse recovery algorithm via resolution
approximation, Image segmentation

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a radar imaging
technique with all-day, all-weather working capabilities,

and has been successfully applied in both military and civil
fields because of its high-resolution imaging ability. How-
ever, traditional SAR images only obtain the two dimensional
(2D) targets’ information on the Range-Doppler domain, and
cannot reflect targets’ information in the height dimension.
How to obtain targets’ three-dimensional (3D) imaging re-
sults has been the fascinating issue of SAR imaging tech-
nology, which leads to the emergence of several SAR 3D
imaging technologies such as curvilinear SAR (CurSAR)

[1], tomography SAR (TomoSAR) [2], and linear array
SAR (LASAR) [3] recently. CurSAR synthesizes a curve
array through the moving of one single antenna and com-
bines the range compression technology to obtain the three-
dimensional (3D) imaging resolution of the imaging scene.
TomoSAR achieves the third-dimensional resolution by syn-
thesizing a virtual aperture in the tomography direction with
multiple parallel voyages. However, it is difficult to achieve
the ideal curve trajectory and obtain high imaging resolution
in CurSAR, and TomoSAR is limited by the multi-voyage
parallel trajectory requirement. Meanwhile, both CurSAR
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and TomoSAR can only obtain high-quality 3D imaging re-
sults under one working mode. Those shortcomings constrain
the application of CurSAR and TomoSAR in 3D imaging
seriously. LASAR [3] achieves 3D imaging resolution by
the moving of linear array antenna and range compression
technology. Different from CurSAR and TomoSAR, LASAR
can achieve 3D high-quality imaging under different working
modes such as downward-looking mode and forward-looking
mode. However, LASAR faces many challenges to realize
3D imaging such as the huge antenna elements and the high-
dimensional echo signal.

Sparse recovery algorithms via compressed sensing (CS)
[4]– [7] theory have been widely researched because of
their super-resolution imaging ability compared with the
matched filter (MF) algorithm [8], and they can achieve high-
quality imaging with the sampling rate of echo signal lower
than the Nyquist sampling rate. Meanwhile, scholars have
proposed several sparse recovery algorithms recently, such
as orthogonal matching pursuit (OMP) algorithm [9]– [10],
Bayesian compressed sensing (BCS) algorithm [11]– [12],
iterative shrinkage/thresholding (IST) method [13], and the
dictionary learning (DL) algorithm [14]. Zhang et.al [15]
have proposed a Robust Flexible Discriminative Dictionary
Learning method to improve the traditional DL algorithms’
performance, and they also proposed a Locality-Constrained
Projective Dictionary Learning (LC-PDL) [16] to reduce the
computational cost of DL algorithms. And sparse reconstruc-
tion algorithms have been used in several areas such as the
radar imaging, image feature extraction [17], and feature
selection [18]– [19]. Besides, because of the sparsity of
the SAR imaging scene, CS algorithms have been used for
SAR imaging recently. In [20], a threshold gradient pursuit
(TGP) algorithm was proposed for SAR 3D imaging, which
uses the maximum-minimum ratio and changing rate of the
scattering coefficients to replace the preset sparsity of the
imaging scene. In [21], the iterative adaptive approach (IAA)
was used for SAR imaging. In [22], the smoothed L0 norm
(SL0) algorithm was used for high-resolution Inverse SAR
(ISAR) imaging by combining the cycle shift method and
exploiting sparse apertures. In [23], an ISAR imaging algo-
rithm based on sparse Bayesian learning (SBL) algorithm
was proposed to achieve a sparser solution and select the
parameters automatically. In [24], the sequential order one
negative exponential (SOONE) function was used to measure
the signal’s sparsity. Meanwhile, a 2D gradient projection
(GP)-SOONE algorithm was proposed for super-resolution
ISAR imaging.

CS algorithms are used for LASAR 3D imaging because of
the sparsity of the 3D imaging scene. In [25], a combination
of polar formatting and L1 regularization algorithm was
proposed for downward-looking LASAR 3D sparse imaging.
In [26], the BCS algorithm was used for reducing side-
lobes in LASAR 3D imaging. In [27], a 3D CS algorithm
was proposed to solve the couple effects between different
directions in LASAR imaging by reconstructing the 2D
sparse signals on overcomplete dictionaries with separable

atoms directly. Besides, the sparsity bayesian recovery via
iterative minimum (SBRIM) algorithm was proposed in [28]
by setting the scattering coefficients of the imaging scene
obey the exponential prior distribution, which achieves high-
resolution imaging without the preset sparsity, and improves
the imaging quality by reducing the preset parameters com-
pared with BCS algorithm. However, the high-dimensional
matrix-operations make the computational complexity of
SBRIM algorithm very huge and limit its application.

CS algorithms obtain imaging results with higher quality
at the expense of increased computational complexity com-
pared with the MF [8] algorithm. Meanwhile, scholars have
proposed several methods to reduce the reconstruction time
of CS algorithms recently. To cut down the computational
burden, article [29] introduced the SL0 algorithm into SAR
sparse imaging. In [30], the whole scene was divided into
several sub-scenes by the range profiles; and then the whole
image was obtained by combining the reconstructed sub-
scenes according to the range profile sub-patches. In [31],
the equidistant slice split (ESS) algorithm was used to split
the 3D imaging scene into several 2D equidistant slices along
the range direction, and the 3D imaging results were obtained
by combining the 2D image of every equidistant slice. Zhao
et al [32] used the truncated singular value decomposition
(TSVD) algorithm to decrease the computational complexity
of LASAR 3D imaging. Meanwhile, according to the Fourier
property of the measurement matrix and the Toeplitz struc-
ture of the covariance matrix, Zhang et al [33] proposed a
fast IAA algorithm for scanning radar imaging. However,
those algorithms except the fast IAA algorithm still conduct
imaging of the whole imaging scene and cannot improve
the computational efficiency of CS algorithms efficiently.
Meanwhile, the measurement matrix in SAR imaging is not
the Fourier matrix, the fast IAA algorithm is not suitable for
high-quality imaging.

To improve the computational efficiency of CS algorithms,
a fast sparse recovery algorithm via resolution approximation
(FSRARA) is proposed in this paper. Firstly, the whole
imaging scene is divided into 3D scattering units by a
uniform spacing larger than the traditional imaging resolu-
tion of LASAR 3D imaging, and the SBRIM algorithm is
used to obtain the 3D low-resolution imaging results of the
whole imaging scene quickly. Secondly, we use the fuzzy
c-means (FCM) [34] clustering algorithm to perform image
segmentation on the preliminary imaging results to extract
the possible targets’ areas in the imaging scene coarsely.
Then, we re-divide the imaging scene by smaller spacing and
re-extract the possible targets’ areas according to the coarsely
possible targets’ areas. Finally, we use the possible targets’
areas to construct the measurement matrix and perform high-
resolution imaging. Besides, the main contributions of FS-
RARA are shown as follows:
• Improve the computational efficiency significantly:

FSRARA has converted the high-dimensional matrix-
operations on the 3D imaging scene to the low-dimensional
matrix-operations on the possible targets’ areas. Meanwhile,
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FIGURE 1. The geometric model of downward-looking LASAR

because of the 3D imaging scene’s sparsity, the possible
targets’ areas are far less than the whole imaging scene.
Therefore, FSRARA has improved the computational effi-
ciency significantly compared with SBRIM algorithm.
• Improve the imaging quality: the influence of false tar-

gets or sidelobe interference are suppressed more effectively
by constructing the measurement matrix by the possible tar-
gets’ areas. Therefore, FSRARA has improved the imaging
quality compared with SBRIM algorithm.

The remaining sections are arranged as follows: the 3D
sparse imaging model of LASAR is introduced in section II;
the FSRARA is proposed in section III; the performance of
FSRARA is analyzed by simulation and experimental results
in section IV; Section V proposes the main conclusions of
the whole paper.

II. 3D SPARSE IMAGING MODEL OF LASAR

A. LINEAR REPRESENTATION MODEL OF LASAR

Assume LASAR works in the downward-looking mode and
the geometric model of LASAR is shown in Fig.1, where axis
x, axis y, and axis z represents the cross-track(CT), along-
track(AT) and range direction respectively. PA = {Ql =
(xl , yl , zl); l ∈ [1, 2, . . . ,NA]} is the location set of antenna
phase centers(APCs) in the 2D equivalent array synthesized
by the moving of linear antenna array (LAA), NA represents
the total number of APCs in the 2D equivalent array.

The LASAR imaging scene is considered as point-targets’
scattering model under far-field observing conditions and
divided into 3D uniform scattering units. Let PS = {Pm =
(xm , ym , zm);m ∈ Ω} represent the set of scattering units’
locations, where Ω = [1, 2, . . . ,M ] represents the index set
of scattering units. Let α = Vec[αm] represent the vector
of scattering coefficients, where αm represents the scattering
coefficient of Pm, and Vec[.] is the vectorized symbol. Set the
LASAR system to transmit the linear frequency modulation
signal [35], and the echo signal of Pm after range compres-
sion is formulated as:

sr(r, l,m) = αmχR(r −Rl,m)exp{−j2kRl,m} (1)
where r represents the range domain, and k represents the

wavenumber of LASAR,Rl,m = ‖Ql−Pm‖2 is the distance
between Pm and Ql, and χR(.) represents the ambiguity
function of range compression. Echo signals of the whole

imaging scene are defined as:
sr(r, l) =

∑
m∈Ω

sr(r, l,m) (2)

where sr(r, l) is written as sr(r, l) = {sr(rn, l) =
ψ(rn, l)

Tα, n = 1, . . . ,NR}, NR represents the num-
ber of sampling points in range domain, and ψ(rn, l) =
Vec[χR(rn−Rl,m)exp(−j2kRl,m)] represents the vector of
delay phase between Pm and Ql. Then the linear representa-
tion model of LASAR is defined as:

sn = Θα+ n (3)
where sn = Vec[sr(rn, l)] ∈ CNA×1 represents the echo

signal of the nth equidistant plane after range compression,
and Θ = Vec[ψ(rn, l)]

T ∈ CNA×M represents the measure-
ment matrix of sn, n is the signal noise in sn. Therefore, the
2D imaging has been translated into getting the optimal value
of α through solving (3) by CS algorithms such as OMP,
BCS and SBRIM algorithm. SBRIM algorithm is used for
imaging in this paper because of its higher imaging quality
and stronger ability in suppressing the signal noise than OMP
and BCS algorithm. Besides, the basic principle of SBRIM
algorithm is introduced in the next subsection.

B. SBRIM ALGORITHM

Set the signal noise n to obey the complex Gaussian ran-
dom distribution [36]: f(n) ∝ CN (0, βI), where β is the
variance of n. Then the posterior probability of sn obeys
f(sn|α, β) ∝ CN (Θα, βI) according to the linear repre-
sentation model, where α and sn represent the scattering
coefficients and the echo signal after range compression of
nth equidistant plane respectively. Therefore the posterior
probability density function (PDF) of sn is defined as:

f(sn|α, β) ∝ 1

(2πβ)NA\2
exp
{
− ‖sn −Θα‖22

2β

}
(4)

The scattering units in the SAR image are independently
and identically distributed, and their distribution is gener-
ally considered as the exponential distribution. Therefore

the prior PDF of α is defined as f(α) ∝
M∏
m=1

f(αm) =

M∏
m=1

exp(−λ0|αm|p), where λ0 > 0, and 0 < p ≤ 1.

Because β belongs to [0,∞), the prior PDF of β is defined as
f(β) ∝ 1. According to the Bayesian Information Criterion
[37], the posterior PDF of α is expressed as:

f(α|sn, β) ∝f(sn|α, β)f(α)f(β)

=
1

(2πβ)NA\2
exp
{
− ‖sn −Θα‖22

2β

}
×

M∏
m=1

exp(−λ0|αm|p)

(5)

Calculating the conditional likelihood function of
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f(α|sn, β), and then we can get:

ln(f(α|sn, β)) =− NAln2π

2
− λ0

M∑
m=1

|αm|p

−
{‖sn −Θα‖22

2β

}
− NAlnβ

2

(6)

NAln2π

2
does not influence the optimal estimation of α

and β by the Maximum Likelihood (ML) criterion [38]; the
conditional likelihood function of f(α|sn, β) is defined as:

L(α, β) = −
{NAlnβ

2
+ λ0

M∑
m=1

|αm|p +
‖sn −Θα‖22

2β

}
= −

{NAlnβ

2
+ λ0‖α‖p +

‖sn −Θα‖22
2β

}
(7)

The lp norm of α in (7) can be smoothly approximated by

‖α‖p ≈
M∑
m=1

(|αi|2 +η)p\2 [39]. Moreover, the cost function

for the optimal estimation of α and β is defined as:

J (α, β) , NAlnβ +
‖sn −Θα‖22

2β
+ λ0

M∑
m=1

(|αi|2 + η)p\2

(8)
where η is the smooth factor, and the optimal estimation

value of α and β are obtained by solving (9) according to
the ML criterion.

(α̂, β̂) = arg lim
α,β

J(α, β) (9)

Therefore, we can obtain the 2D imaging results of all
equidistant planes through solving (9), and the 3D imaging
results by combining every equidistant planar 2D imaging
results. Then we summarize the flow diagram of SBRIM
algorithm and LASAR 3D imaging as Fig.2.

C. PROBLEMS OF SBRIM ALGORITHM
The computational complexity of SBRIM algorithm in 3D
imaging is quantitatively analyzed in this subsection. Define
one multiplication and addition as the unit computational
complexity: ϑ(1), and the computational complexity of per-
forming inversion on A ∈ CN×M is equal to A times
B ∈ CM×M .

The computational complexity of 2D imaging using
SBRIM algorithm for the nth equidistant plane is analyzed
firstly. According to the flow diagram of SBRIM algorithm
shown in Fig.2 (a), the computational complexity of SBRIM
algorithm is mainly generated by the multiplication among
the vector of scattering coefficients, measurement matrix Θ
and echo signal sn. For example, when the 2D imaging scene
of the nth equidistant plane is divided into M0 ×M0 scatter-
ing units, and the measurement matrix of sn is Θ ∈ CNA×M .
And the computational complexity of SBRIM algorithm on
2D imaging is ϑ(ISNAM

2), whereM = M2
0 ,NA represents

the total number of APCs in the 2D equivalent array, and
IS represents the number of iterations of SBRIM algorithm.
Therefore, the total computational complexity of SBRIM al-

gorithm on LASAR 3D imaging is ϑ(NRISNAM
2) accord-

ing to Fig.2 (b), whereNR represents the number of sampling
points in the range direction. Meanwhile, the computational
complexity of 3D imaging by MF and OMP algorithm is rep-
resented by ϑ(NRNAM) and ϑ(KNRNAM) [40] under the
same imaging conditions respectively, where K is the preset
sparsity of imaging scene in the OMP algorithm. There-
fore, the computational complexity of SBRIM algorithm
far exceeds MF and OMP algorithm and we need to study
a new sparse imaging algorithm to improve computational
efficiency without reducing the imaging quality compared
with SBRIM algorithm.

III. FAST SPARSE RECOVERY ALGORITHM BASED ON
RESOLUTION APPROXIMATION
To improve the computational efficiency of LASAR 3D
imaging, we present a fast sparse recovery algorithm via
resolution approximation (FSRARA) in this section, FS-
RARA mainly consists of the following three steps. Firstly,
FSRARA obtains the low-resolution imaging results of the
whole imaging scene by SBRIM [28] algorithm quickly.
Secondly the low-resolution imaging results are conducted
image segmentation by FCM [34] algorithm to extract the
possible targets’ areas in the whole imaging scene. Finally,
we use the possible targets’ areas to perform the 3D high-
resolution imaging. Moreover, the detailed steps of LASAR
3D imaging by FSRARA are introduced in the following
subsections.

A. LOW-RESOLUTION IMAGING
The whole imaging scene is divided into 3D discrete scatter-
ing units by a uniform spacing, and the spacing is larger than
the traditional array imaging resolution of LASAR. Besides,
the spacing is practically set as twice of the traditional
array resolution after taking the computational efficiency
and imaging quality into overall consideration. Then the 3D
low-resolution imaging results α0 ∈ CM1×M1×NR of the
whole imaging scene are obtained by SBRIM [28] algorithm
after Is1 iterations, where NR represents the total number of
sampling points in the range direction.

B. IMAGE SEGMENTATION
After obtaining the low-resolution imaging results α0, α0 is
classified into several subclasses through performing image
segmentation by the FCM algorithm to obtain the possible
targets’ areas. To extract the possible targets’ areas as com-
pletely as possible, the extracting threshold is generated by
the subclass imaging results corresponding to the clustering
centers with the smallest two amplitudes, and the possible
targets’ areas are extracted coarsely by the extraction thresh-
old and α0. Then, the imaging scene is re-divided into 3D
scattering units by a new uniform spacing smaller than the
array imaging resolution. Meanwhile, the possible targets’
areas are extracted again according to the preliminary pos-
sible targets’ areas. In addition, the main steps of extracting
the possible targets’ areas are introduced as follows:
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(a) (b)

FIGURE 2. (a) The flow diagram of SBRIM algorithm. (b) The flow diagram of LASAR 3D imaging.

Step A.1: The nth equidistant planar imaging results in the
low-resolution imaging resultsα0 are extracted and recorded
as αn = αn(i, j) = α0(i, j, n) ∈ CM1×M1 , 1 ≤ i, j ≤M1;

Step A.2: The normalized αn is obtained and recorded as
ᾱn = ᾱn(i, j) by (10):

ᾱn(i, j) =
|αn(i, j)| −min|αn|
max|αn| −min|αn|

(10)

Step A.3: The matrix α̂n is obtained by conducting the
means filtering operation [41] on ᾱn;

Step A.4: The Gray scale value of α̂n is generated and

recorded by hn =
{
hn(i, j) =

|α̂n(i, j)|
max|α̂n|

}
∈ CM1×M1 and

transformed into ~gn = {gnw
= hn(i, j);w = (j − 1) ×

M1 + i} ∈ CMZ1 , where MZ1 = (M1)2 represents the total
number of scattering units in the nth equidistant plane.

Step A.5: Initialize the main parameters of image segmen-
tation: the maximum iterations are T = 100, the threshold
of terminating iterations is ε = 10−5, the fuzzy exponent
is m = 2, and the number of subclass is c = 3, the mem-
bership function matrix is initialized by U (0) = [u

(0)
knw

; k =

1, · · · , c], where u(0)knw
is a random number between 0 and

1 and satisfies
c∑

k=1

u
(0)
knw

= 1. The initial value of cluster

centers are obtained and recorded as V (0) = {v(0)k ; k =
1, · · · , c} by (11).

v
(0)
k =

MZ1∑
w=1

(u
(0)
knw

)2gnw

MZ1∑
w=1

(u
(0)
knw

)2

(11)

Step A.6: Update the membership degree function matrix
U (t) = [u

(t)
knw

]c×MZ1
, where u(t)knw

represents the extent of
gnw belonging to the subclass imaging results corresponding
to v(t)k , v(t)k represents the value of clustering centers after t
iterations, t is the current iteration number.

1): Set u(t)knw
= 1,u(t)pnw = 0, p 6= k, when d(t)knw

= 0;
2): Update u(t)knw

by (12) when d(t)knw
> 0; where d(t)knw

=

‖gnw
− v(t)k ‖2 is the distance between gnw

and v(t)k .

u
(t)
knw

=
1

c∑
l=1

(
d
(t)
knw

d
(t)
lnw

)2

(12)

Step A.7: Update the cluster center v(t+1)
k by (13);

v
(t+1)
k =

MZ1∑
w=1

(u
(t)
knw

)2gnw

MZ1∑
w=1

(u
(t)
knw

)2

(13)

Step A.8: Repeat Step A.6 to A.7 if ‖v(t+1)
k − v(t)k ‖ > ε or

t < T ; otherwise terminate iteration, and the optimal mem-
bership function matrix and clustering centers are obtained
and recorded as U (t) → U and V (t) → V respectively;

Step A.9: gnw
is divided into the subclass imaging results

corresponding to the clustering center with the maximum
membership degree function of gnw . The classification re-
sults of hn are sorted in the ascending order according to the
amplitude of vk and recorded as hn = [hn1

, hn2
, hn3

], where
hn1

and hn3
represent the two subclasses imaging results of

nth equidistant plane corresponding to the clustering center
with the minimum and maximum amplitude respectively. The
extraction threshold for nth equidistant planar imaging results
is generated by (14) to extract the possible targets’ areas as
completely as possible.

ρn0 =
max(hn1

) + min(hn2
)

2
(14)

The classification results of the low-resolution imaging
results α0 are obtained after traversing all equidistant planar
imaging results through Step A.1 to A.9 proposed in this
subsection. Besides, the extraction thresholds for α0 are
generated and recorded as ρ0 = {ρn0 ;n = 1, . . . , NR}
according to the classification results of α0 and (14). The
low-resolution imaging results of possible targets’ areas are
obtained and recorded as αs ∈ CM1×M1×NR through (15).{

If gnw ≥ ρn0 , αs(i, j, n) = αn(i, j)

If gnw
< ρn0 , αs(i, j, n) = 0

(15)

After obtaining the low-resolution imaging results of pos-
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sible targets’ areasαs, the 2D imaging scene interval of every
equidistant plane is re-divided into M0×M0 scattering units
by a new uniform spacing, and the spacing is smaller than the
array imaging resolution of LASAR, where M0 > M1. Then
the imaging results of possible targets’ areas in the re-divided
imaging scene αf ∈ CM0×M0×NR are obtained by perform-
ing the linear interpolation operation [42] onαs. Because the
linear interpolation operation on αs leads to the increasing
false targets, the possible targets’ areas in the re-divided
imaging scene are re-extracted through the same method as
extracting the possible targets’ areas in the low-resolution
imaging results. In addition, the classification results of αf
are acquired and recorded as hf = {hfn ;n = 1, . . . , NR} ∈
CM0×M0×NR ; where hfn = [hfn1

, hfn2
, hfn3

] represents the
classification results of the nth equidistant planar imaging
results in αf . The extraction thresholds for αf are generated
and recorded as ρf = {ρnf ;n = 1, . . . , NR} according
to hf and (14). Moreover, the possible targets’ areas in
the re-divided imaging scene are extracted and recorded as
G = {G(xr, yr, n);n = 1, . . . , NR} by (16).{

If hfn(i, j) ≥ ρnf , (i, j, n) ∈ G(xr, yr, n)

If hfn(i, j) < ρnf , (i, j, n) /∈ G(xr, yr, n)
(16)

where 1 ≤ i, j ≤ M0 and 1 ≤ r ≤ NMn , G(xr, yr, n) rep-
resents the possible targets’ areas in the nth equidistant plane,
and NMn

is the number of scattering units in G(xr, yr, n).

According to the steps of performing image segmentation,
the image segmentation operation on the imaging results does
not affect the distribution of the echo signal. However, targets
with amplitudes lower than the extraction threshold are lost
after extracting the possible targets’ areas. Because those
targets are also submerged in the background when con-
ducting imaging by CS algorithms such as OMP or SBRIM
algorithm directly, the loss of those targets does not affect
the image quality of high-resolution imaging. Meanwhile, the
false targets and sidelobe interference are suppressed more
effectively through extracting the possible targets’ areas,
and the possible targets’ areas are considered as the prior
information for high-resolution imaging.

C. HIGH-RESOLUTION IMAGING

After obtaining the possible targets’ areas G in III.B, we
use the possible targets’ areas rather than the whole imaging
scene to construct the measurement matrix and perform high-
resolution imaging. Hence, the cost function for getting the
optimal estimation of α and β has been translated into (17)
according to G(xr, yr, n) and (7) , where G(xr, yr, n) repre-
sents the possible targets’ areas in the 2D imaging scene of
nth equidistant plane, α represents the scattering coefficients
of the nth equidistant plane, β represents the variance of
the signal noise. Meanwhile, the main process of conducting
high-resolution imaging according to the possible targets’

areas is introduced in the following content.
J(α(xr, yr, n), β) , NAlnβ

+
‖sn −Θ(:, wr)α(xr, yr, n)‖22

2β

+ λ

NMn∑
r=1

(|α(xr, yr, n)|2 + η)
p
2

(17)

where 1 ≤ r ≤ NMn
, NMn

represents the number of scatter-
ing units in G(xr, yr, n), (xr, yr, n) represents the location
information of α(xr, yr, n), sn represents the nth equidistant
planar echo signal after range compression, Θ(:, wr) =[
Θ(1, wr), . . . ,Θ(NA, wr);wr = (yr − 1)M0 + xr

]
is the

vector of delay phase for α(xr, yr, n), and NA represents the
total number of APC in the 2D equivalent array. Therefore,
the high-resolution imaging according to the possible targets’
areas has been translated into getting the optimal solution of
α and β of the arguments in the function (18), and we use the
ML criterion to acquire the optimal value of α and β in the
following two steps.

(α̂n, β̂n) = argmin lim
α,β

J(α(xr, yr, n), β) (18)

Step B.1: Estimate the scattering coefficients vector α̂(t)
n

by noise variance β̂(t−1):
Calculate the partial derivative of J(α̂(t−1)(xr, yr, n), β̂(t−1))

for α̂(t−1)(xr, yr, n) after t − 1 iterations, then the partial
derivative of α̂(t−1)(xr, yr, n) can be formulated as:

∂J(α̂(t−1)(xr, yr, n), β̂(t−1))

∂α̂(t−1)(xr, yr, n)

=2λ(t)s Λ(α̂(t−1)(xr, yr, n))× α̂(t−1)(xr, yr, n)

+
2Θ(:, wr)

H(Θ(:, wr)α̂
(t−1)(xr, yr, n)− sn)

β̂(t−1)

(19)

where (xr, yr, n) ∈ G(xr, yr, n), wr = (yr − 1)M0 + xr,
and λ(t)s = λβ̂(t−1), Λ(α̂(t−1)(xr, yr, n)) ∈ CMz×Mz is the
diagonal matrix of α̂(t−1)(xr, yr, n) and is defined as:
Λ(α̂(t−1)(xr, yr, n)) = Λ(wr, wr)

=
p

2
(|α̂(t−1)(xr, yr, n)|2 + η)

p

2
−1

(20)

Suppose
∂J(α̂(t−1)(xr, yr, n), β̂(t−1))

∂α̂(t−1)(xr, yr, n)
= 0, then the

estimation value of α̂(t−1)(xr, yr, n) satisfies (21).
(Θ(:, wr)

HΘ(:, wr) + λ(t)s Λ(α̂(t−1)(xr, yr, n)))

× α̂(t−1)(xr, yr, n) = Θ(:, wr)
Hsn

(21)

It is difficult to directly determine an accurate solution of
(21) because of the nonlinear function Λ(α̂(t−1)(xr, yr, n))
of α̂(t−1)(xr, yr, n), and efficiently estimated through (22)
by the iterative approximation method [43].

(Θ(:, wr)
HΘ(:, wr) + λ(t)s Λ(α̂(t−1)(xr, yr, n)))

× α̂(t)(xr, yr, n) = Θ(:, wr)
Hsn

(22)

Therefore, the estimation value of nth equidistant planar
scattering coefficients can be obtained after several iterations
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and recorded as α̂(t)
n ∈ CM0×M0 through (22) and (23).{

If(xr, yr, n) ∈ G(xr, yr, n), α̂
(t)
n (xr, yr) = α̂(t)(xr, yr, n)

If(xr, yr, n) /∈ G(xr, yr, n), α̂
(t)
n (xr, yr) = 0

(23)

Step B.2: Estimate the noise variance β̂(t) by
α̂(t)(xr, yr, n):

Calculate the partial derivative of J(α̂(t)(xr, yr, n), β̂(t−1))
for β̂(t−1), and the partial derivative can be expressed as:

∂J(α̂(t)(xr, yr, n), β̂(t−1))

∂β̂(t−1)

=
NA

β̂(t−1)
− ‖sn −Θ(:, wr)α̂

(t)(xr, yr, n)‖22
(β̂(t−1))2

(24)

Suppose
∂J(α̂(t)(xr, yr, n), β̂(t−1))

∂β̂(t−1)
= 0, then we can

obtain the estimation value of β̂(t−1) by (25).

β̂(t) =
‖sn −Θ(:, wr)α̂

(t)(xr, yr, n)‖22
NA

(25)

where sn represents the nth equidistant planar echo signal
after range compression, Θ(:, wr) is the phase-delay vector
for α̂(t)(xr, yr, n).

If α̂(t)
n satisfies

‖α̂(t)
n − α̂(t−1)

n ‖2
‖α̂(t)

n ‖2
< ε0 or t > IS2

, then

the 2D high-resolution imaging results of the nth equidistant
plane are obtained: α̂(t)

n → α̂n, where ε0 represents the
iteration termination threshold, IS2

represents the number of
iterations in the high-resolution imaging step. Moreover, the
2D high-resolution imaging results of all equidistant planes
are obtained after traversing all equidistant planes by Step
B.1 to B.2, and the 3D high-resolution imaging results are
obtained and recorded as α̂ = {α̂n;n = 1, . . . , NR} ∈
CM0×M0×NR by combining those 2D imaging results.

In the high-resolution imaging step, we use the possible
targets’ areas instead of the whole imaging scene to construct
the measurement matrix and estimate the scattering coeffi-
cients of the imaging scene. Therefore, FSRARA has sim-
plified the high-dimensional matrix-operations on the whole
imaging scene with low-dimensional matrix-operations ac-
cording to the possible targets’ areas successfully. Besides,
the size of possible targets’ areas influences the computa-
tional efficiency of the high-resolution imaging step greatly.
Because of the sparsity of 3D imaging scene, the percentage
of possible targets’ areas in the whole imaging scene is very
small and FSRARA has improved the computational effi-
ciency efficiently compared with SBRIM algorithm. Mean-
while, through extracting the possible targets’ areas and
constructing the measurement matrix by the possible targets’
areas, the false targets and sidelobe interference have been
suppressed more effectively and the measurement matrix
indicates the characteristics of targets in the imaging scene
better. FSRARA has improved the imaging quality compared
with SBRIM algorithm.

D. BASIC STEPS OF LASAR 3D IMAGING BY FSRARA
According to the main steps of the low-resolution imaging,
image segmentation and high-resolution imaging, we can
summarize the main steps of LASAR 3D imaging by FS-
RARA in the following contents, meanwhile, the flow chart
of FSRARA is shown in Fig. 3.

Step 1: The original echo signals of LASAR are conducted
range compression, and echo signals after range compression
are recorded as S = {sn;n = 1, . . . , NR};

Step 2: Divide the 2D imaging scene interval of every
equidistant plane by a uniform spacing intoM1×M1 scatter-
ing units, the spacing is practically twice of the array imaging
resolution of LASAR, and the 3D low-resolution imaging
results of the whole imaging scene are obtained and recorded
as α0 ∈ CM1×M1×NR by SBRIM [28] algorithm after Is1
iterations;

Step 3: α0 is classified into several subclasses after per-
forming image segmentation by FCM algorithm, and the
extraction thresholds of α0 are generated and recorded as
ρ0 = {ρn0 ;n = 1, . . . , NR} by the subclass imaging results
corresponding to the clustering centers with the smallest two
amplitude. Moreover, the low-resolution imaging results of
possible targets’ areas are extracted and recorded as αs ∈
CM1×M1×NR according to the extraction thresholds ρ0 and
the low-resolution imaging results α0;

Step 4: Redivide the 2D imaging scene interval of the nth
equidistant plane intoM0×M0 scattering units by a uniform
spacing smaller than the array imaging resolution of LASAR.

Step 5: The imaging results of possible targets’ areas in
the re-divided imaging scene are obtained by performing
the linear interpolation operation on αs and recorded as
αf ∈ CM0×M0×NR , meanwhile, the possible targets’ areas
are re-extracted and recorded as G = {G(xr, yr, n);n =
1, . . . , NR} ∈ CM0×M0×NR by the same method as Step 3;

Step 6: The 2D high-resolution imaging results of the nth
equidistant plane are obtained by performing Step B.1 to B.2
proposed in subsection III.C after Is2 iterations according to
G(xr, yr, n), and recorded as α̂n ∈ CM0×M0 ;

Step 7: After traversing the imaging scene of every
equidistant plane by Step 4 to Step 6 proposed in this sub-
section, the 3D imaging results of the whole imaging scene
are obtained and recorded as α̂ = {α̂n, n = 1, . . . , NR} ∈
CM0×M0×NR by combining the 2D imaging results of all
equidistant planes.

E. THE COMPUTATIONAL COMPLEXITY OF FSRARA
According to subsection III.C, the computational complexity
of LASAR 3D imaging by FSRARA is mainly generated by
two parts: the 3D low-resolution imaging of the whole imag-
ing scene, and the 3D high-resolution imaging according to
the possible targets’ areas.

The computational complexity of 3D low-resolution imag-
ing is ϑ(NRIS1

NAM
4
1 ) according to the analysis of the

computational complexity in subsection II.C; meanwhile, the
computational complexity of 3D high-resolution imaging is
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FIGURE 3. The flow chart of LASAR 3D imaging by FSRARA

TABLE I. The computational complexity of SBRIM and FSRARA
algorithm on LASAR 3D imaging

Algorithm Computational complexity

SBRIM algorithm ϑ(NRIS1
NAM

4
0 )

FSRARA ϑ(NRIS1
NAM

4
1 ) +

NR∑
n=1

ϑ(IS2
NAN

2
Mn

)

NR∑
n=1

ϑ(IS2NAN
2
Mn

+ IS2NANMn) ≈
NR∑
n=1

ϑ(IS2NAN
2
Mn

),

which is mainly generated by Step 6 and 7 proposed in
subsection III.D. Hence, the total computational complexity
of FSRARA on LASAR 3D imaging is ϑ(NRIS1

NAM
4
1 ) +

NR∑
n=1

ϑ(IS2NAN
2
Mn

), where IS = IS1 + IS2 represents the

total iterations of FSRARA on LASAR 3D imaging, IS1
and

IS2
represent the number of iterations in the low-resolution

imaging step and high-resolution imaging step respectively,
M1 and M0 represent the number of scattering units in
the low-resolution imaging step and high-resolution imaging
step respectively, NA represents the total number of APCs
in the 2D equivalent array, NMn

is the number of scattering
units in the possible targets’ areas of the nth equidistant
planar imaging scene, and NR represents the amount of
sampling points in the range direction. Meanwhile, the com-
putational complexity of SBRIM and FSRARA on LASAR
3D imaging is shown in Table.I.

As seen in Table.I, M0 and NMn
determines the compu-

tational complexity of the SBRIM and FSRARA algorithm
on LASAR 3D imaging respectively. However, because of
the sparsity of the 3D imaging scene, the percentage of the
possible targets’ areas in the whole imaging scene is very
small. Therefore, FSRARA has reduced the computational
complexity significantly compared with SBRIM algorithm.

IV. SIMULATION AND EXPERIMENTAL RESULTS
Both simulation and experimental results are used to certify
the effectiveness of FSRARA for LASAR 3D imaging in this
section. Meanwhile, the SBRIM algorithm is the main com-

parison algorithm in this paper because of its high imaging
quality. Besides, MF, OMP, IAA, SL0 and BCS algorithms
are also used as the comparison algorithm to evaluate the
performance of FSRARA better. In order to evaluate the
performance of those algorithms in LASAR 3D imaging
quantitatively, the running time speed-up (RTS), the normal-
ized mean square error (NMSE), targets background contrast
(TBR) [44], and image entropy (ENT) [45] are used in this
section. The RTS is used to compare the computational
efficiency of different algorithms. Meanwhile, NMSE, TBR,
and ENT are used to evaluate the imaging quality.

RTS is defined by RTS = TCS/TRA, where TCS repre-
sents the running time of LASAR imaging by one algorithm,
and TRA represents the running time of the other algorithm.
The RTS illustrates the comparison of computational effi-
ciency between two algorithms.

NMSE is defined by NMSE =
‖α̂−α‖2
‖α‖2

, whereα is the

original scattering coefficients of the imaging scene, and α̂ is
the estimation value of α. The smaller NMSE illustrates that
the estimation results are more approximate to the original
scattering coefficients.

ENT is defined by ENT =
∑
g(i)

p(i) log p(i), where p(i)

represents the percentage of the pixel with the Gray value i,
and g represents the total number of Gray values in imaging
results. ENT is used to characterize the texture of the image;
the image is sharper with smaller ENT.

TBR is defined by TBR = 20 log
{NT
NB

∑
i∈T (|α̂i|)∑
j∈B(|α̂j |)

}
,

where T and B are obtained by (26) and represent the
index set of targets and background in the imaging results
respectively, NT and NB represents the number of elements
in T and B respectively. The bigger TBR proves that targets
are easier to be identified from the imaging results.{

If|α̂n(x, y)| ≥ max(|α̂|) ∗ γ, (x, y, n) ∈ T
If|α̂n(x, y)| < max(|α̂|) ∗ γ, (x, y, n) ∈ B

(26)
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TABLE II. The basic parameters of point-targets simulation

Parameters value

Center frequency /GHz 30
Size of 2D array /m 4× 4

Signal bandwidth /GHz 0.8
Number of elements in AT direction 40

Platform height /m 1000
Number of elements in CT direction 40

where 1 ≤ x, y ≤ M0, α̂ ∈ CM0×M0×NR represents the
3D imaging results, M0 represents the number of scattering
units, NR represents the number of sampling points in the
range direction, and γ represents the judgment threshold
between the targets and background in α̂.

A. SIMULATION RESULTS
B. SIMULATIONS OF POINT-TARGETS
In this subsection, the point-targets simulations for one 2D
equidistant plane are conducted to verify the effectiveness of
FSRARA for high-resolution imaging. The main parameters
and the original scene of the point-targets simulation are
shown in Table.II and Fig.5 (a) respectively, and the 2D
imaging scene is divided into 101×101 scattering units along
the CT and AT direction. Moreover, imaging results of MF,
OMP, IAA, SL0, BCS, SBRIM, and FSRARA algorithms
are shown in Fig.4. As seen in Fig.4, MF algorithm suffers
from severe sidelobe interference and low imaging resolu-
tion. Meanwhile, all CS algorithms used in this paper have a
stronger ability to eliminate sidelobe interference and obtain
higher imaging resolution compared with MF algorithm.

To evaluate the performance of FSRARA better and more
detailed, we conduct point-targets simulations under different
imaging conditions such as the sampling rate, signal to
noise ratio (SNR) [46] and amount of scattering units.
Meanwhile, 200 Monte Carlo trials of FSRARA and OMP
algorithm are conducted to evaluate the performance better;
however, the Monte Carlo trials of another four algorithms
are set as 50 times because of the huge computational com-
plexity. The point-targets simulations under different sam-
pling rate of echo signal are conducted firstly. Besides, the

sampling rate is calculated by Sampling Rate =
N

NA
and

belongs to 5% ∼ 100%, where NA represents the total
number of APCs in the 2D equivalent array andN represents
the number of APCs used for LASAR 3D imaging, and
the evaluation results under different sampling rates with
101× 101 scattering units are shown in Fig.5.

As seen in Fig.5, the NMSE and ENT of all algorithms
increase with the decreasing sampling rate because of the
increasing sparsity of echo signal; while, TBR decreases
with the decreasing sampling rate. As seen in Fig.5 (a)∼(c),
the NMSE of the IAA algorithm under different sampling
rates is greater than 0.4 and larger than that of other algo-
rithms. Meanwhile, the NMSE of OMP and SL0 algorithm is
larger than 0.3 when the sampling rate is smaller than 30%.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 4. (a) Original scene. (b) Imaging results of MF algorithm. (c)
Imaging results of OMP algorithm.(d) Imaging results of IAA algorithm.
(e) Imaging results of SL0 algorithm. (f) Imaging results of BCS
algorithm.(g) Imaging results of SBRIM algorithm. (h) Imaging results of
FSRARA algorithm.

Therefore, OMP algorithm cannot achieve high-resolution
imaging under sampling rate lower than 30% because of
the limited preset sparsity of the imaging scene. Meanwhile,
SL0 algorithm cannot estimate the scattering coefficients
accurately under sampling rate smaller than 30% because of
the fixed iterative step length of the Steepest descent method
in SL0 algorithm. Moreover, the NMSE of BCS algorithm
is second only to the IAA algorithm and larger than 0.3
when the sampling rate is less than 50%. Because several
parameters such as the noise variance or iterative termination
threshold are needed to be preset when the BCS algorithm

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2959128, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) (b)

(c) (d)

FIGURE 5. Evaluation results under different sampling rates. (a)NMSE.
(b) TBR.(c) ENT. (d)RTS.

is used for imaging and the preset parameters cannot satisfy
the requirement of the high-resolution imaging under all
sampling rates entirely, which makes BCS algorithm fail to
obtain high-quality imaging results under the sampling rate
lower than 50%.

Compared with the BCS algorithm, SBRIM and FSRARA
algorithm obtain imaging results with higher imaging qual-
ity by assuming the imaging scene obey the exponential
distribution and reducing the preset parameters. They sup-
press the influence of echo signal’s increasing sparsity better
and obtain imaging results with smaller NMSE compared
with OMP and SL0 algorithm under sampling rate smaller
than 60%. However, in the high-resolution imaging step, the
measurement matrix is constructed by the possible targets’
areas and represents the targets’ characteristics in the imag-
ing scene better. In conclusion, through conducting high-
resolution imaging by the possible targets’ areas, FSRARA
obtains imaging results with higher TBR, smaller NMSE,
and ENT compared with SBRIM algorithm. Besides, the
execution time of FSRARA is smaller than SBRIM, BCS,
IAA and SL0 algorithm, albeit larger than MF and OMP al-
gorithm. The computational efficiency of SBRIM algorithm
has been improved about 300 times by FSRARA, which
encounters our goal of proposing a new sparse 3D LASAR
imaging method. And the improvement of computational
efficiency increases with the increasing sparsity influenced
by the decreasing sampling rate. Therefore, FSRARA obtains
imaging results with higher imaging quality and greater
computational efficiency compared with SBRIM algorithm,
and has better performance under higher sparsity.

To evaluate the performance of FSRARA under different
imaging resolution, point-targets simulations under different
amount of scattering units are conducted secondly. The num-
bers of scattering units change from 31 × 31 to 101 × 101
along CT and AT direction, and the evaluation results under
different amount of scattering units with sampling rate 50%

(a) (b)

(c) (d)

FIGURE 6. Evaluation results under different amount of scattering units.
(a)NMSE. (b) TBR.(c) ENT.(d) RTS.

are shown in Fig.6.
As seen in Fig.6 (a)∼ (c), NMSE of those algorithms

above increase because of the increasing imaging resolution
as the growth of scattering units. The covariance matrix in
the IAA algorithm reaches its singular value more quickly as
the increasing imaging resolution, which limits the number
of iterations in the IAA algorithm. Meanwhile, the high-
dimensional matrix-operations limit the number of iterations
further, the limited iterations make the imaging results of the
IAA algorithm suffer from false targets or sidelobe interfer-
ence seriously. The NMSE of IAA algorithm is larger than
0.4 when the number of scattering units is larger than 81×81.
Moreover, the difficulty of presetting the parameters of the
BCS algorithm accurately increases as the increasing imag-
ing resolution, which makes the influence of false targets
or sidelobe interference increase gradually. Therefore, BCS
algorithm has obtained imaging results with higher NMSE
and ENT, and smaller TBR compared with SL0, SBRIM,
and FSRARA algorithm. Meanwhile, the NMSE of the OMP
algorithm increases as the increasing imaging resolution be-
cause of the limitation of preset sparsity. When the number of
scattering units is larger than 71×71, OMP algorithm obtains
imaging results with larger NMSE compared with SBRIM
and FSRARA algorithm.

Because SBRIM algorithm has reduced the preset param-
eters successfully compared with BCS algorithm, SBRIM
algorithm can achieve high-quality imaging even under high
imaging resolution. Meanwhile, the measurement matrix of
FSRARA indicates the targets’ characteristics in the imaging
scene better. FSRARA eliminates the sidelobe interference
and false targets better and obtains imaging results with
larger TBR, and smaller ENT and NMSE compared with
SBRIM algorithm. As seen in Fig.6(d), because of the de-
creasing percentage of possible targets’ areas in the imaging
scene as the increasing scattering units, the RTS between
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(a) (b)

(c) (d)

FIGURE 7. Evaluation results under different SNR. (a)NMSE. (b) TBR.(c)
ENT.(d) RTS.

FSRARA and other algorithms increase gradually. There-
fore, FSRARA has better performance in improving com-
putational efficiency when the imaging resolution is higher.
Meanwhile, the RTS between SBRIM and FSRARA is bigger
than 50 when the number of scattering units is larger than
61 × 61. The execution time of FSRARA is larger than the
OMP algorithm and smaller than another four algorithms.

To evaluate the ability of FSRARA in eliminating the
influence of signal noise on high-quality imaging, point-
targets simulations under different SNR [46] are conducted
finally. Meanwhile, because SL0 algorithm cannot obtain
high-quality imaging results under low SNR, SL0 algorithm
is not used as the comparison algorithm in point-targets
simulation under different SNR. The SNR of the echo signal
belongs to 0 ∼ 40, and the evaluation results under different
SNR with 81 × 81 scattering units and 100% sampling rate
are shown in Fig.7.

As seen in Fig.7 (a)∼(c), both NMSE and ENT decrease
as the growth of SNR because of the decreasing false targets
and sidelobe interference; however, TBR increases with the
growth of SNR. The NMSE of the IAA algorithm is the
largest and greater than 0.5 when the SNR is smaller than
20 dB because of the limited iterations caused by the huge
computational complexity. Moreover, NMSE of the OMP
algorithm increases as the decreasing SNR because of the
limited preset sparsity of the imaging scene and is larger
than SBRIM and FSRARA, and bigger than 0.3 under SNR
smaller than 10. Because the scattering coefficients of the
imaging scene do not obey the Gaussian distribution and
the preset parameters cannot satisfy the requirement of high-
resolution imaging under low SNR, the imaging results of
the BCS algorithm suffers from false targets and sidelobe
interference seriously under low SNR.

Different from BCS algorithm, both SBRIM and FSRARA
algorithm assume the imaging scene obey the exponential
prior distribution and only preset λ0 and p to achieve high-

resolution imaging. They have a stronger ability to suppress
the signal noise under low SNR compared with OMP, IAA,
and BCS algorithm. Meanwhile, through extracting the pos-
sible targets’ areas and performing high-resolution imaging
by the possible targets’ areas, FSRARA has eliminated the
false targets or sidelobe interference better and obtained
imaging results with smaller NMSE, ENT, and bigger TBR
compared with SBRIM algorithm. As seen in Fig.7(d), the
decreasing false targets and sidelobe interference with the
growing of SNR reduces the size of the possible targets’ areas
and the computational complexity of FSRARA. However,
the computational efficiency of the SBRIM, BCS, and IAA
algorithms is not affected by the SNR, which makes the RTS
between SBRIM, BCS, and IAA and FSRARA algorithms
increase as the increasing SNR. And the execution time of
FSRARA is between MF and OMP algorithm, and RTS
between SBRIM and FSRARA is bigger than 50.

According to the simulations in this subsection, the co-
variance matrix and the high-dimensional matrix-operations
have limited the number of iterations of IAA algorithm, the
limited iterations make the imaging results of IAA algorithm
are affected by the sidelobe interference or false targets
seriously. Meanwhile, SL0 algorithm cannot obtain high-
quality imaging results under low SNR, and this disadvantage
has constrained the application of SL0 algorithm. Moreover,
because of the preset sparsity of the imaging scene, OMP
algorithm cannot suppress the influence of false targets or
sidelobe interference effectively as the increasing imaging
resolution or sparsity or decreasing SNR. Meanwhile, the
preset parameters in the BCS algorithm cannot satisfy the
requirement of high-quality imaging entirely, which makes
the imaging results of BCS algorithm suffer from sidelobe
interference or false targets.

Both SBRIM and FSRARA algorithm have eliminated
the sidelobe interference or false targets better and obtained
imaging results with higher quality compared with BCS
algorithm by reducing the preset parameters. However, the
measurement matrix indicates the characteristics of targets
in the imaging scene better, and FSRARA has eliminated
the influence of signal noise better than SBRIM algorithm.
Meanwhile, FSRARA has reduced the dimensions of the
measurement matrix and simplified the high-dimensional
matrix-operations into the calculation of corresponding el-
ements in the possible targets’ areas successfully. There-
fore, FSRARA improves the computational efficiency signif-
icantly and obtains imaging results with higher quality com-
pared with SBRIM algorithm. The computational efficiency
of FSRARA is mostly lower than the OMP and MF algorithm
and higher than BCS, IAA, SL0, and SBRIM algorithm.
Moreover, FSRARA has better performance in improving
computational efficiency when the sparsity of the imaging
scene is stronger, or the imaging resolution is higher.

C. SIMULATIONS OF COMPLEX TARGETS
The simulations of complex targets are conducted to analyze
the performance of FSRARA for LASAR 3D imaging further
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TABLE III. The basic parameters of 3D simulation simulation

Parameters value

Center frequency /GHz 37.5
Length of array in AT direction /m 3

Signal bandwidth /GHz 0.8
Length of array in CT direction /m 3

Platform height /m 1000
Sampling points in range domain 512

Number of elements in AT direction 64
Number of elements in CT direction 64

Sampling frequency /GHz 1.25
Pulse repetition interval /µs 2

in this subsection. The main parameters of complex targets
simulation are shown in Table.III, meanwhile, the original
imaging scene and the 3D imaging results of complex targets
are shown in Fig.8. As seen in Fig.8, OMP, BCS, SBRIM,
and FSRARA algorithm achieve 3D high-quality imaging for
complex targets and have a stronger ability in suppressing
sidelobe interference than MF algorithm. Meanwhile, the
imaging results of SL0 algorithm suffer from the sidelobe
interference seriously because of the signal noise in the echo
signal. Moreover, the high-dimensional matrix-operations
make the computational efficiency of 3D imaging by IAA
algorithm unacceptable. For example, the running time of
3D imaging by IAA algorithm is about 102 hours when the
2D imaging scene of every equidistant plane is divided into
41× 41 scattering units, and the iterations of IAA algorithm
are 3 times, and the computer’s primary hardware devices
are listed as follows: Core I7 8700K, 64GB RAM, and the
NVIDIA GeForce GTX 1080Ti. Therefore, both IAA and
SL0 algorithms are not used as the comparison algorithms
in this subsection. Meanwhile, because the original scattering
coefficients of 3D imaging scene are hardly calculated, TBR,
ENT and RTS are used to evaluate the performance of algo-
rithms above in this subsection. Fig.9 shows the evaluation
results under different amount of scattering units with the
sampling rate 100% and SNR 20 dB . The 2D imaging
scene is divided into 51× 51 to 101× 101 scattering units.

As seen in Fig.8, BCS, SBRIM, and FSRARA algorithm
can achieve 3D high-quality imaging without the preset
sparsity comparing to the OMP algorithm. However, because
the preset parameters in BCS algorithm cannot meet the re-
quirement of 3D high-quality imaging totally, BCS algorithm
has lost some targets’ information and cannot obtain 3D
high-quality imaging results. Meanwhile, both SBRIM and
FSRARA has obtained imaging results with higher quality
by reducing the preset parameters compared with BCS algo-
rithm. And as seen in Fig.9, the computational complexity
of BCS algorithm is higher than SBRIM and FSRARA al-
gorithm. Meanwhile, FSRARA has obtained imaging results
with bigger TBR and smaller ENT compared with OMP
and SBRIM algorithm, and the RTS between SBRIM and
FSRARA increases as the growth of scattering units and is

bigger than 50 when the amount of scattering units is larger
than 61 × 61. Meanwhile, the execution time of FSRARA
is between MF and OMP algorithm. Therefore, FSRARA
improves the computational efficiency of SBRIM algorithm
significantly; and improves the imaging quality for LASAR
3D imaging compared with SBRIM algorithm by conducting
3D high-resolution imaging by the possible targets’ areas.

D. EXPERIMENTAL RESULTS
In order to verify the effectiveness of FSRARA for the
experimental data, the experimental data obtained by the
X-band ground equivalent LASAR (X-GDLASAR) exper-
imental system is used for 3D imaging in this subsection.
The X-GDLASAR system obtains a high range resolution
through transmitting the stepped frequency signal with wide
bandwidth by vector network analyzer. Meanwhile, the main
parameters of X-GDLASAR system are shown as follows:
the center frequency of the X-GDLASAR system is 10 GHz,
the signal bandwidth is 2 GHz, the size of the 2D equivalent
array is 1.5 × 1.3 m. The geometric model of two balls
experiment is shown in Fig.10 (b), there are two copper balls
in the imaging scene, and the distance between ball one and
the X-GDLASAR system is 5 m. Firstly, the possible targets’
echo signals are extracted to avoid useless computation and
decrease the influence of false targets according to the loca-
tions of two balls. Meanwhile, MF, OMP, SL0, IAA, BCS,
and SBRIM algorithm are used for high-quality imaging
and considered as the comparison algorithms to evaluate the
performance of FSRARA in 3D imaging of the experimental
data better, and the imaging results of those algorithms are
shown in Fig.11.

As seen in Fig.11, MF algorithm has obtained imaging
results with severe sidelobe interference, and SL0 algorithm
cannot obtain high-quality imaging results because of the
inevitable signal noise in the echo signal of the experimental
data, then SL0 algorithm is not used as the comparison
algorithm to evaluate the performance of FSRARA in the 3D
imaging of experimental data. Meanwhile, we have obtained
imaging results of other 5 CS algorithms used in this paper
under different amount of scattering units to evaluate the
performance of FSRARA for the experimental data better,
and the 2D imaging scene interval of every equidistant plane
is divided into 31 × 31 to 101 × 101 scattering units. Fig.12
shows the evaluation results under different amount of scat-
tering units with the sampling rate 100%.

As seen in Fig.11, the imaging results of the OMP algo-
rithm has lost some targets’ information and suffered from
sidelobe interference because of the limited preset sparsity
of imaging scene. According to Fig.11 (c) and Fig.12 (b), the
high-dimensional matrix-operations and the huge echo signal
makes the computational complexity of IAA algorithm very
huge. For example, the running time of 3D imaging by IAA
algorithm is more than 20 hours when the imaging scene of
every 2D equidistant plane is divided into 61× 61 scattering
units. Besides, the iterations of the IAA algorithm are set to
3 times to avoid the covariance matrix reaching its singular
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(a) (b) (c) (d)

(e) (f) (g)

FIGURE 8. The original scene and imaging results of complex targets. (a) Original scene. (b) Imaging results of MF algorithm. (c) Imaging results of
OMP algorithm. (d) Imaging results of SL0 algorithm. (e) Imaging results of BCS algorithm. (f) Imaging results of SBRIM algorithm. (g) Imaging results of
FSRARA algorithm.

(a) (b)

(c) (d)

FIGURE 9. Evaluation results of complex targets simulations under
different scattering units. (a)RTS. (b) Execution time. (c) TBR.(d) ENT

value. Meanwhile, because of the inevitable signal noise in
the echo signal and the limited iterations, the imaging results
of IAA algorithm are influenced by the sidelobe interference
and false targets terribly.

As seen in Fig.11 and 12, because the preset parameters in
BCS algorithm hardly meet the requirements of all equidis-
tant plane high-quality imaging for the experimental data, the
imaging results of the BCS algorithm are terribly affected by

(a) (b)

FIGURE 10. (a)The X-GDLASAR system. (b) The geometric model of two
balls experiment.

the sidelobe interference. Moreover, the execution time of 3D
imaging by IAA and BCS algorithm is higher than SBRIM
algorithm. Besides, both SBRIM and FSRARA algorithm
have eliminated the sidelobe interference better than BCS
algorithm by reducing the preset parameters, and they have
obtained imaging results with higher imaging quality com-
pared with IAA and BCS algorithm. FSRARA has obtained
imaging results with higher TBR and smaller ENT compared
with other four algorithms. Meanwhile, the execution time of
FSRARA is between MF and OMP algorithm. RTS between
SBRIM and FSRARA increases as the growth of scattering
units and is bigger than 50 when the amount of scattering
units is larger than 61 × 61. There exist false targets in the
extracted echo signal’s region after extracting the echo signal
according to the targets’ position, all CS algorithms used for
LASAR 3D imaging are influenced by the false targets’ in-
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(a) (b) (c) (d)

(e)

Ball 1

Ball 2

Ball 1

Ball 2

(f) (g)

FIGURE 11. Imaging results of two balls experiment. (a)MF algorithm. (b) OMP algorithm.(c) IAA algorithm. (d) BCS algorithm. (e) SL0 algorithm. (f)
SBRIM algorithm. (g) FSRARA

(a) (b)

(c) (d)

FIGURE 12. Evaluation results of two balls experiment under different
scattering units. (a)RTS. (b) Execution time. (c) TBR. (d) ENT

terference, except the FSRARA. Through extracting the pos-
sible targets’ areas in the imaging scene and conducting 3D
imaging according to the possible targets’ areas, FSRARA
eliminates the false targets in the imaging scene better. To
summarize, FSRARA can improve the imaging quality and
computational efficiency for LASAR 3D imaging compared
with SBRIM algorithm according to the experimental results

in this subsection.

V. CONCLUSION

In this paper, a novel algorithm named FSRARA is pro-
posed to improve the computational efficiency of CS algo-
rithms. FSRARA has replaced the high-dimensional matrix-
operations on the whole imaging scene with the low-
dimensional matrix-operations on the possible targets’ ar-
eas, additionally, the size of the possible targets’ areas is
far smaller than the whole 3D imaging scene because of
the sparsity of the 3D imaging scene. Both simulation and
experimental results demonstrated that the computational
efficiency of FSRARA has been improved by hundreds of
times at most compared with SBRIM algorithm. The compu-
tational efficiency of FSRARA is lower than MF algorithm
and higher than SL0, IAA, and BCS algorithms. Meanwhile,
the computational efficiency of FSRARA is lower than the
OMP algorithm except for the case of large preset sparsity
in the OMP algorithm. Besides, the false targets and sidelobe
interference has been suppressed effectively by just using the
possible targets’ areas to construct the measurement matrix,
and the measurement matrix indicates the characteristics of
targets in the imaging scene better. FSRARA obtained 3D
imaging results with higher imaging quality compared with
OMP, SL0, IAA, BCS, and SBRIM algorithm. Simulation
and experimental results have confirmed our conclusions
well.
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